ORACLE’ 1 2(,‘
DATABASE

Oracle Database In-Memory

ORACLE WHITE PAPER | JULY 2015

ORACLE

Table of Contents

Executive Overview

Intended Audience

Introduction

Oracle Database In-Memory Option
Row Format vs. Column Format
The In-Memory Column Store
In-Memory Compression
In-Memory Scans
In-Memory Joins

In-Memory Aggregation

DML And The In-Memory Column Store
Bulk Data Loads
Partition Exchange Loads

Transaction Processing

The In-Memory Column Store On RAC

In-Memory Fault Tolerance

The In-Memory Column Store in a Multitenant Environment

Controlling the use of Oracle Database In-Memory

10

12

13

15

15

16

17

18

19

20

21

Core Initialization Parameters
Additional Initialization Parameters

Optimizer Hints

Monitoring and Managing Oracle Database In-Memory
Monitoring What Objects Are In The In-Memory Column Store

Managing IM Column Store Population CPU consumption

Conclusion

21

22

23

24

24

25

27

Executive Overview

Oracle Database In-Memory transparently accelerates analytic queries by orders of magnitude,
enabling real-time business decisions. Using Database In-Memory, businesses can instantaneously
run analytics and reports that previously took hours or days. Businesses benefit from better
decisions made in real-time, resulting in lower costs, improved productivity, and increased

competitiveness.

Oracle Database In-Memory accelerates both Data Warehouses and mixed workload OLTP
databases, and is easily deployed under any existing application that is compatible with Oracle
Database 12c. No application changes are required. Database In-Memory uses Oracle’s mature
scale-up, scale-out, and storage-tiering technologies to cost effectively run any size workload.
Oracle’s industry leading availability and security features all work transparently with Database In-

Memory, making it the most robust offering on the market.

The ability to easily perform real-time data analysis together with real-time transaction processing
on all existing applications enables organizations to transform into Real-Time Enterprises that
quickly make data-driven decisions, respond instantly to customer demands, and continuously

optimize all key processes.

Intended Audience

Readers are assumed to have hands-on experience with Oracle Database technologies from the

perspective of a DBA or performance specialist.

Introduction

Today’s information architecture is much more dynamic than it was just a few years ago. Business
users now demand more decision-enabling information, sooner. In order to keep up with increases
in demand, companies are being forced to run analytics on their operational systems, in addition to
their data warehouses. This leads to a precarious balancing act between transactional workloads,
subject to frequent inserts and updates, and reporting style queries that need to scan large amounts

of data.

With the introduction of Oracle Database In-Memory, a single database can now efficiently support
mixed workloads, delivering optimal performance for transactions while simultaneously supporting
real-time analytics and reporting. This is possible due to a unique "dual-format" architecture that
enables data to be maintained in both the existing Oracle row format, for OLTP operations, and a
new purely in-memory column format, optimized for analytical processing. In-Memory also enables
both datamarts and data warehouses to provide more ad-hoc analytics, giving end-users the ability

to ask multiple business driving queries in the same time it takes to run just one now.

Embedding the in-memory column format into the existing Oracle Database software ensures that it
is fully compatible with ALL existing features, and requires no changes in the application layer.
Companies striving to become real-time enterprises can more easily achieve their goals, regardless
of what applications they are running. This paper describes the main components of Oracle
Database In-Memory and provides simple, reproducible examples to make it easy to get acquainted
with them. It also outlines how Database In-Memory can be integrated into existing operational

systems and data warehouse environments to improve both performance and manageability.

This whitepaper is the first in a two part series on Oracle Database In-Memory. It describes the
main components and the key concepts of Oracle Database In-Memory, while the second part

outlines the best practices for Implementing it.

Oracle Database In-Memory Option

Row Format vs. Column Format

Oracle Database has traditionally stored data in a row format. In a row format database, each new transaction or
record stored in the database is represented as a new row in a table. That row is made up of multiple columns,
with each column representing a different attribute about that record. A row format is ideal for online transaction
systems, as it allows quick access to all of the columns in a record since all of the data for a given record are
kept together in-memory and on-storage.

A column format database stores each of the attributes about a transaction or record in a separate column
structure. A column format is ideal for analytics, as it allows for faster data retrieval when only a few columns are
selected but the query accesses a large portion of the data set.

But what happens when a DML operation (insert, update or delete) occurs on each format? A row format is
incredibly efficient for processing DML as it manipulates an entire record in one operation i.e. insert a row, update
a row or delete a row. A column format is not so efficient at processing row-wise DML: In order to insert or delete
a single record in a column format all of the columnar structures in the table must be changed.

Up until now you have been forced to pick just one format and suffer the tradeoff of either sub-optimal OLTP or
sub-optimal analytics performance.

Oracle Database In-Memory (Database In-Memory) provides the best of both worlds by allowing data to be
simultaneously populated in both an in-memory row format (the buffer cache) and a new in-memory column
format.

Note that the dual-format architecture does not double memory requirements. The in-memory column format
should be sized to accommodate the objects that must be stored in memory, but the buffer cache has been
optimized for decades to run effectively with a much smaller size than the size of the database. In practice it is
expected that the dual-format architecture will impose less than a 20% overhead in terms of total memory
requirements. This is a small price to pay for optimal performance at all times for all workloads.

Memory Memory
SALES I = SALES

Row u Column
Format Format

Figure 1. Oracle’s unique dual-format architecture.

With Oracle’s unique approach, there remains a single copy of the table on storage, so there are no additional
storage costs or synchronization issues. The database maintains full transactional consistency between the row
and the columnar formats, just as it maintains consistency between tables and indexes. The Oracle Optimizer is
fully aware of the column format: It automatically routes analytic queries to the column format and OLTP

operations to the row format, ensuring outstanding performance and complete data consistency for all workloads
without any application changes.

The In-Memory Column Store

Database In-Memory uses an In-Memory column store (IM column store), which is a new component of the
Oracle Database System Global Area (SGA), called the In-Memory Area. Data in the IM column store does not
reside in the traditional row format used by the Oracle Database; instead it uses a new column format. The IM
column store does not replace the buffer cache, but acts as a supplement, so that data can now be stored in
memory in both a row and a column format.

The In-Memory area is a static pool within the SGA, whose size is controlled by the initialization parameter
INMEMORY_STIZE (default 0). The current size of the In-Memory area is visible in VSSGA, As a static pool, any
changes to the INMEMORY _STIZE parameter will not take effect until the database instance is restarted. It is also
not impacted or controlled by Automatic Memory Management (AMM). The In-Memory area must have a
minimum size of 100MB.

The In-Memory area is sub-divided into two pools: a 1MB pool used to store the actual column formatted data
populated into memory, and a 64K pool used to store metadata about the objects that are populated into the IM
column store. The amount of available memory in each pool is visible in the V$ INMEMORY AREA view. The
relative size of the two pools is determined by internal heuristics, the majority of the In-Memory area memory is
allocated to the 1MB pool.

SOL> Select pool, alloc_bytes, used_bytes, populate_status
2 From Y$INMEMORY_AREA:

POOL ALLOC_BYTES USED_BYTES POPULATE_STATUS

1MB POOL 1710227456 16777216 DONE
B4KE POOL 419430400 1300544 DONE

Figure 2. Details of the space allocation within the INMEMORY_AREA as seen in VSINMEMORY AREA

Populating The In-Memory Column Store

Unlike a pure In-Memory database, not all of the objects in an Oracle database need to be populated in the IM
column store. The IM column store should be populated with the most performance-critical data in the database.
Less performance-critical data can reside on lower cost flash or disk. Of course, if your database is small
enough, you can populate all of your tables into the IM column store. Database In-Memory adds a new
INMEMORY attribute for tables and materialized views. Only objects with the INMEMORY attribute are populated
into the IM column store. The INMEMORY attribute can be specified on a tablespace, table, (sub)partition, or
materialized view. If it is enabled at the tablespace level, then all new tables and materialized views in the
tablespace will be enabled for the IM column store by default.

ALTER TABLESPACE ts data DEFAULT INMEMORY
Figure 3. Enabling the In-Memory attribute on the ts_data tablespace by specifying the INMEMORY attribute

By default, all of the columns in an object with the INMEMORY attribute will be populated into the IM column
store. However, it is possible to populate only a subset of columns if desired. For example, the following

statement sets the In-Memory attribute on the table SALES, in the SH sample schema, but it excludes the column
PROD 1ID,.

ALTER TABLE sales INMEMORY NO INMEMORY (prod id)
Figure 4. Enabling the In-Memory attribute on the sales table but excluding the prod_id column

Similarly, for a partitioned table, all of the table's partitions inherit the in-memory attribute but it's possible to
populate just a subset of the partitions or sub-partitions.

To indicate an object is no longer a candidate, and to instantly remove it from the IM column store, simply specify
the NO INMEMORY clause.

ALTER TABLE sales MODIFY PARTITION SALES Q1 1998 NO INMEMORY

Figure 5. Disabling the In-Memory attribute on one partition of the sales table by specifying the NO INMEMORY clause

The IM column store is populated by a set of background processes referred to as worker processes
(ora_w001_orcl). The database is fully active / accessible while this occurs. With a pure in-memory database, the
database cannot be accessed until all the data is populated into memory, which causes severe availability
issues.

Each worker process is given a subset of database blocks from the object to populate into the IM column store.
Population is a streaming mechanism, simultaneously columnizing and compressing the data.

Just as a tablespace on disk is made up of multiple extents, the IM column store is made up of multiple In-
Memory Compression Units (IMCUs). Each worker process allocates its own IMCU and populates its subset of
database blocks in it. Data is not sorted or ordered in any specific way during population. It is read in the same
order it appears in the row format.

Objects are populated into the IM column store either in a prioritized list immediately after the database is opened
or after they are scanned (queried) for the first time. The order in which objects are populated is controlled by the
keyword PRIORITY, which has five levels (see figure 7). The default PRIORITY js NONE, which means an object
is populated only after it is scanned for the first time. All objects at a given priority level must be fully populated
before the population for any objects at a lower priority level can commence. However, the population order can
be superseded if an object without a PRIORITY is scanned, triggering its population into IM column store.

ALTER TABLE customers INMEMORY PRIORITY CRITICAL

Figure 6. Enabling the In-Memory attribute on the customers table with a priority level of critical

PRIORITY DESCRIPTION
CRITICAL Object is populated immediately after the database is opened
HIGH Object is populated after all CRITICAL objects have been populated, if space remains available in

the IM column store

MEDIUM Object is populated after all CRITICAL and HIGH objects have been populated, and space
remains available in the IM column store

LOW Object is populated after all CRITICAL, HIGH, and MEDIUM objects have been populated, if
space remains available in the IM column store

NONE Objects only populated after they are scanned for the first time (Default), if space is available in the
IM column store

Figure 7. Different priority levels controlled by the PRIORITY sub clause of the INMEMORY clause

Restrictions

Almost all objects in the database are eligible to be populated into the IM column but there are a small number of
exceptions. The following database objects cannot be populated in the IM column store:

* Any object owned by the SYS user and stored in the SYSTEM or SYSAUX tablespace
* Index Organized Tables (IOTs)
* Clustered Tables
The following data types are also not supported in the IM column store:
* LONGS (deprecated since Oracle Database 8i)
* Outofline LOBS

All of the other columns in an object that contains these datatypes are eligible to be populated into the IM column
store. Any query that accesses only the columns residing in the IM column store will benefit from accessing the
table data via the column store. Any query that requires data from columns with a non-supported column type will
be executed via the buffer cache.

Objects that are smaller than 64KB are not populated into memory, as they will waste a considerable amount of
space inside the IM column store as memory is allocated in 1MB chunks.

The IM column store cannot be used on an Active Data Guard standby instance in the current release. However
it can be used in a Logical Standby instance and in an instance maintained using Oracle Golden Gate.

In-Memory Compression

Typically compression is considered only as a space-saving mechanism. However, data populated into the IM
column store is compressed using a new set of compression algorithms that not only help save space but also
improve query performance. The new Oracle In-Memory compression format allows queries to execute directly
against the compressed columns. This means all scanning and filtering operations will execute on a much
smaller amount of data. Data is only decompressed when it is required for the result set.

In-memory compression is specified using the keyword MEMCOMPRESS, a sub-clause of the INMEMORY
attribute . There are six levels, each of which provides a different level of compression and performance.

COMPRESSION LEVEL DESCRIPTION

NO MEMCOMPRESS Data is populated without any compression

MEMCOMPRESS FOR DML Minimal compression optimized for DML performance

MEMCOMPRESS FOR QUERY LOW Optimized for query performance (default)

MEMCOMPRESS FOR QUERY HIGH . .
Optimized for query performance as well as space saving

MEMCOMPRESS FOR CAPACITY LOW . . .
Balanced with a greater bias towards space saving

MEMCOMPRESS FOR CAPACITY HIGH . .
Optimized for space saving

Figure 8. Different compression levels controlled by the MEMCOMPRESS sub-clause of the INMEMORY clause

By default, data is compressed using the FOR QUERY LOW option, which provides the best performance for
queries. This option utilizes common compression techniques such as Dictionary Encoding, Run Length
Encoding and Bit-Packing. The FOR CAPACITY options apply an additional compression technique on top of
FOR QUERY compression, which can have a significant impact on performance as each entry must be
decompressed before the WHERE clause predicates can be applied. The FOR CAPACITY LOW option applies a
proprietary compression technique called OZIP that offers extremely fast decompression that is tuned specifically
for Oracle Database. The FOR CAPACITY HIGH option applies a heavier-weight compression algorithm with a
larger penalty on decompression in order to provide higher compression.

Compression ratios can vary from 2X — 20X, depending on the compression option chosen, the datatype, and the
contents of the table. The compression technique used can vary across columns, or partitions within a single
table. For example, you might optimize some columns in a table for scan speed, and others for space saving.

CREATE TABLE employees
(cl NUMBER
c2 NUMBER
c3 VARCHARZ2 (10)
c4 CLOB)
INMEMORY MEMCOMPRESS FOR QUERY

NO INMEMORY (c4)
INMEMORY MEMCOMPRESS FOR CAPCITY HIGH(c2)

Figure 9. A create table command that indicates different compression techniques for different columns
Oracle Compression Advisor

Oracle Compression Advisor (DBMS_COMPRESSION) has been enhanced to support in-memory
compression. The advisor provides an estimate of the compression ratio that can be realized through
the use of MEMCOMPRESS. This estimate is based on analysis of a sample of the table data and
provides a good estimate of the actual results obtained once the table is populated into the IM column
store. As the advisor actually applies the new MEMCOMPRESS algorithms to the data it can only be run

in an Oracle Database 12.1.0.2 (or later) environment.

DECLARE
1 blkcnt cmp PLS INTEGER
1 blkcnt uncmp PLS INTEGER
1 row_cmp PLS INTEGER
1 row_uncmp PLS INTEGER
cmp_ratio PLS INTEGER
1 comptype str VARCHARZ2 (100)
comp_ratio_allrows NUMBER := -1

BEGIN

dbms_compression.Get_compression_ratio (
-— Input parameters

scratchtbsname 'TS_DATA'

ownname 'SSB'

objname 'LINEORDER'

subobjname NULL

comptype dbms compression.comp inmemory query low

-— Output parameter

blkent cmp 1 blkcnt cmp

blkent uncmp 1 blkcnt uncmp

row_ cmp 1 row cmp

row_uncmp 1 row_uncmp

cmp_ratio cmp_ratio

comptype str 1 comptype str

subset numrows dbms_compression.comp ratio_allrows)
dbms_output.Put_line ('The IM compression ratio is '|| cmp_ratio)
dbms_output.Put_line('Size in-mem 1 byte for every '|| cmp ratio ||

'bytes on disk'");

)
END

Figure 10. Using the Oracle Compression Advisor (DBMS COMPRESSION) to determine the size of the MY_SALES table in
memory

Note when you set the comptype to an of the MEMCOMPRESS types the blkcnt_cmp output value is always set
to 0 as there are on data blocks in the IM column store.

Also changing the compression clause of columns with an ALTER TABLE statement results in a repopulation of
any existing data in the IM column store.

In-Memory Scans

Analytic queries typically reference only a small subset of the columns in a table. Oracle Database In-Memory
accesses only the columns needed by a query, and applies any WHERE clause filter predicates to these columns
directly without having to decompress them first. This greatly reduces the amount of data that needs to be
accessed and processed.

In-Memory Storage Index

A further reduction in the amount of data accessed is possible due to the In-Memory Storage Indexes that are
automatically created and maintained on each of the columns in the IM column store. Storage Indexes allow data
pruning to occur based on the filter predicates supplied in a SQL statement. An In-Memory Storage Index keeps
track of minimum and maximum values for each column in an IMCU. When a query specifies a WHERE clause
predicate, the In-Memory Storage Index on the referenced column is examined to determine if any entries with
the specified column value exist in each IMCU by comparing the specified value(s) to the minimum and
maximum values maintained in the Storage Index. If the column value is outside the minimum and maximum
range for an IMCU, the scan of that IMCU is avoided.

For equality, in-list, and some range predicates an additional level of data pruning is possible via the metadata
dictionary created for each IMCU when dictionary-based compression is used. The metadata dictionary contains
a list of the distinct values for each column within that IMCU. Thus dictionary based pruning allows Oracle
Database to determine if the value being searched for actually exists within an IMCU, ensuring only the
necessary IMCUs are scanned.

SIMD Vector Processing

For the data that does need to be scanned in the IM column store, Database In-Memory uses SIMD vector
processing (Single Instruction processing Multiple Data values). Instead of evaluating each entry in the column
one at a time, SIMD vector processing allows a set of column values to be evaluated together in a single CPU
instruction.

The columnar format used in the IM column store has been specifically designed to maximize the number of
column entries that can be loaded into the vector registers on the CPU and evaluated in a single CPU instruction.
SIMD vector processing enables the Oracle Database In-Memory to scan billion of rows per second.

For example, let's use the SALES table in the SH sample schema (see Figure 11), and let's assume we are asked
to find the total number of sales orders that used the PROMO_ID value of 9999. The SALES table has been fully
populated into the IM column store. The query begins by scanning just the PROMO_ID column of the SALES
table. The first 8 values from the PROMO_ID column are loaded into the SIMD register on the CPU and compared
with 9999 in a single CPU instruction (the number of values loaded will vary based on datatype & memory
compression used). The number of entries that match 9999 is recorded, then the entries are discarded and
another 8 entries are loaded into the register for evaluation. And so on until all of the entries in the PROMO_ID
column have been evaluated.

Example:
= Find all sales

With PROMO_ID 9999
2

Vector
Compare
all values
an 1 cycle

Memory

REGISTER

Figure 11. Using SIMD vector processing enables the scanning of billions of rows per second

To determine if a SQL statement is scanning data in the IM column examine the execution plan.

| Id | Operation | Mame | \
0	SELECT STATEMEMT	
1	SORT AGGREGATE	
21 FARTITION RAMGE ALL		
I* 3 | (_TABLE ACCESS IMMEMORY FULUI SALES |

Figure 12. New IN MEMORY keyword in the execution plan indicates operations that are candidates for In-Memory

You will notice that the execution plan shows a new set of keywords “IN MEMORY”, These keywords indicate that
the LINEORDER table has been marked for IN MEMORY and Oracle Database may use the column store in this

query.
In-Memory Joins

SQL statements that join multiple tables can also be processed very efficiently in the IM column store as they can
take advantage of Bloom Filters. A Bloom filter transforms a join into a filter that can be applied as part of the
scan of the larger table. Bloom filters were originally introduced in Oracle Database 10g to enhance hash join
performance and are not specific to Oracle Database In-Memory. However, they are very efficiently applied to
column format data via SIMD vector processing.

When two tables are joined via a hash join, the first table (typically the smaller table) is scanned and the rows
that satisfy the WHERE clause predicates (for that table) are used to create an in-memory hash table (stored in
Process Global Area - PGA). During the hash table creation, a bit vector or Bloom filter is also created based on
the join column. The bit vector is then sent as an additional predicate to the scan of the second table. After the
WHERE clause predicates have been applied to the second table scan, the resulting rows will have their join
column hashed and it will be compared to values in the bit vector. If a match is found in the bit vector that row will
be sent to the hash join. If no match is found then the row will be discarded

It's easy to identify Bloom filters in the execution plan. They will appear in two places, at creation time and again
when it is applied. Let’s take a simple two-table join between the DATE_DIM and LINEORDERS table as an
example.

SELECT SUM(lo_ extendedprice * lo discount) revenue
FROM lineorder 1

date dim d
WHERE 1.lo orderdate = d.d datekey
AND 1.lo discount BETWEEN 2 AND 3
AND d.d date='December 24, 2013';

Figure 13. Simple two-table join that will benefit from Bloom filters in the In-Memory column store

Below is the plan for this query with the Bloom filter highlighted. The first step executed in this plan is actually line
4; an in-memory full table scan of the DATE_DIM table. The Bloom filter (:BF0000) is created immediately after
the scan of the DATE_DIM table completes (line 3). The Bloom filter is then applied as part of the in-memory full
table scan of the LINEORDER table (line 5 & 6).

| Id | Operation | Name II

I 0 | SELECT STATEMENT

|
I 11 SORT AGGREGATE | |
I*_2 | HACH ININ 1 |
|

(N JOIN FILTER CREATE $BF0000 i

* MUK 112

g HE H LN U1
|51 JOIN FILTER USE | $BFO000

Figure 14. Creation and use of a Bloom filter in a two-table join between the DATE_DIM and LINEORDER tables

It is possible to see what join condition was used to build the Bloom filter by looking at the predicate information
under the plan. Look for *SYS_OP_BLOOM_FILTER' in the filter predicates. You may be wondering why a HASH
JOIN appears in the plan (line 2) if the join was converted to a Bloom filter. The HASH JOIN is there because a
Bloom filter has the potential to return a false positive. The HASH JOIN confirms that all of the rows returned
from the scan of the LINEORDER table are true matches for the join condition. Typically this consumes very little
work.

What happens for a more complex query where there are multiple tables being joined? This is where Oracle’s
30+ years of database innovation kicks in. By seamlessly building the IM column store into Oracle Database we
can take advantage of all of the optimizations that have been added to the database since the first release. Using
a series of optimizer transformations, multiple table joins can be rewritten to allow multiple Bloom filters to be
created and used as part of the scan of the large table or fact table.

Note: from Oracle Database 12.1.0.2 onward, Bloom filters can be used on serial queries when executed against
a table that is populated into the IM column store. Not all of the tables in the query need to be populated into the
IM column store in order to create and use Bloom filters.

In-Memory Aggregation

Analytic style queries often require more than just simple filters and joins. They require complex aggregations
and summaries. A new optimizer transformation, called Vector Group By, has been introduced with Oracle
Database 12.1.0.2 to ensure more complex analytic queries can be processed using new CPU-efficient
algorithms.

The Vector Group By transformation is a two-part process not dissimilar to that of star transformation. Let's take
the following business query as an example: Find the total sales of footwear products in outlet stores.

Phase 1

1. The query will begin by scanning the two dimension tables (smaller tables) STORES and PRODUCTS
(lines 5 & 10 in the plan below).

2. A new data structure called a Key Vector is created based on the results of each of these scans (lines
4,9, & 13 in the plan below). A key vector is similar to a Bloom filter as it allows the join predicates to
be applied as additional filter predicates during the scan of the SALES table (largest table). Unlike a
Bloom filter a key vector will not return a false positive.

Figure 15.

Phase 2

5.

::
:

The key vectors are also used to create an additional structure called an In-Memory Accumulator. The
accumulator is a multi-dimensional array built in the PGA that enables Oracle Database to conduct the
aggregation or GROUP BY during the scan of the SALES table instead of having to do it afterwards.

At the end of the first phase temporary tables are created to hold the payload columns (columns
referenced in the SELECT list) from the smaller dimension table (lines 2, 6, & 11 in the plan below).
Note this step is not depicted in Figure 15 below.

In-Memory ‘ :) Sales
Stores (’ Accumulator) 62 (0 (0
S {12 || 1110
4116 (| []20
17 || |]05]
(2|7 || |08
Outlets —
Products | [

Footwear

Sales

Key vectors created on each join column

In-Memory aggregation example - Find the total sales of footwear in our outlet stores

The second part of the execution plan begins with the scan of the SALES table and the application of
the key vectors (line 24-29 in the plan below). For each entry in the SALES table that matches the join
conditions (is an outlet store and is a footwear product), the corresponding sales amount will be added
to the appropriate cell in the In-Memory Accumulator. If a value already exists in that cell, the two
values will be added together and the resulting value will be put in the cell.

Finally the results of the large table scan are then joined back to the temporary tables created as part of
the scan of the dimension tables (lines 16, 18, & 19). Remember these temporary tables contain only
the payload columns. Note this step is not depicted in Figure 15 above.

The combination of these two phases dramatically improves the efficiency of a multiple table join with complex
aggregations.

| 0 | SELECT STATEMENT |

| 1 | TEMP TABLE TRANSFORMATION |

| 2 | LOAD AS SELECT | SYS TEMP 0FD9D6635 4F9FC7 |
| 3 VECTOR GROUP BY |

| 4 | KEY VECTOR CREATE BUFFERED | :KV0000

| 5 | TABLE ACCESS INMEMORY FULL | STORES | PHASE 1
| 6 | LOAD AS SELECT | SYS _TEMP 0FD9D6636 4F9FC7 |
| 7| VECTOR GROUP BY |

| 8 | HASH GROUP BY |

| 9 | KEY VECTOR CREATE BUFFERED | :KvV0001

| 10 | TABLE ACCESS INMEMORY FULL | PRODUCTS

|11 | SORT GROUP BY |

|12 | HASH JOIN | \
| 13 | MERGE JOIN CARTESIAN |

| 14 | TABLE ACCESS FULL | SYS TEMP OFD9D6636 4F9FC7
|15 | BUFFER SORT |

| 16 | TABLE ACCESS FULL | SYS TEMP OFD9D6635 4F9FC7
|17 | VIEW | VW VT 80F21617

| 18 | VECTOR GROUP BY |

|19 | HASH GROUP BY |

| 20 | KEY VECTOR USE | :KV0000 | PHASE 2
|21 | KEY VECTOR USE | :KvV0001

|22 | TABLE ACCESS INMEMORY FULL| SALES

Figure 16. Execution plan for query that benefits from In-Memory aggregation

The VECTOR GROUP BY transformation is a cost based transformation, which means the optimizer will cost the

execution plan with and without the transformation and pick the one with the lowest cost. For example, the
VECTOR GROUP BY transformation may be selected in the following scenarios:

* The join columns between the tables contain "mostly" unique keys or numeric keys
* The fact table (largest table in the query) is at least 10X larger than the other tables
* The tables are populated into the IM column store

The VECTOR GROUP BY transformation is unlikely to be chosen in the following scenarios:
* Joins are performed between two or more very large tables
* The dimension tables contain more than 2 billion rows

* The system does not have sufficient memory resources

DML And The In-Memory Column Store

It's clear that the IM column store can dramatically improve the performance of all types of queries but very few
database environments are read only. For the IM column store to be truly effective in modern database
environments it has to be able to handle both bulk data loads AND online transaction processing.

Bulk Data Loads

Bulk data loads occur most commonly in Data Warehouse environments and are typically conducted as a direct
path load. A direct path load parses the input data, converts the data for each input field to its corresponding
Oracle data type, and then builds a column array structure for the data. These column array structures are used

to format Oracle data blocks and build index keys. The newly formatted database blocks are then written directly

to the database, bypassing the standard SQL processing engine and the database buffer cache.

A direct path load operation is an all or nothing operation. This means that the operation is not committed until all
of the data has been loaded. Should something go wrong in the middle of the operation, the entire operation will
be aborted. To meet this strict criterion, a direct path loads inserts data into database blocks that are created
above the segment high water mark (maximum number of database blocks used so far by an object or segment).
Once the direct path load is committed, the high water mark is moved to encompass the newly created blocks
into the segment and the blocks will be made visible to other SQL operations on the same table. Up until this
point the IM column store is not aware that any data change occurred on the segment.

Once the operation has been committed, the IM column store is instantly aware it does not have all of the data
populated for the object. The size of the missing data will be visible in the BYTES_NOT_POPULATED column of
the vSIM_SEGMENTS view (see monitoring section). If the object has a PRIORITY specified on it then the newly
added data will be automatically populated into the IM column store. Otherwise the next time the object is
queried, the background worker processes will be triggered to begin populating the missing data, assuming there
is free space in the IM column store.

Partition Exchange Loads

It is strongly recommended that the larger tables or fact tables in a data warehouse be partitioned. One of the
benefits of partitioning is the ability to load data quickly and easily with minimal impact on users by using the
exchange partition command. The exchange partition command allows the data in a non-partitioned table to be
swapped into a particular partition in a partitioned table. The command does not physically move data; instead it
updates the data dictionary to exchange a pointer from the partition to the table and vice versa. Because there is
no physical movement of data, an exchange does not generate redo and undo, making it a sub-second operation
and far less likely to impact performance than any traditional data-movement approaches such as INSERT,

As with a direct path operation the IM column is not aware of a partition exchange load until the operation has
been completed. At that point the data in the temporary table is now part of the partitioned table. If the temporary
table had the INMEMORY attribute set and all of its data has been populated into the IM column store, nothing
else will happen. The data that was in the temporary table will simply be accessed via the IM column store along
with the rest of the data in the partitioned table the next time it is scanned.

However, if the temporary table did not have the INMEMORY attribute set, then all subsequent accesses to the
data in the newly exchanged partition will be done via the buffer cache. Remember the INMEMORY attribute is a
physical attribute of an object. If you wish the partition to have that attribute after the exchange it must be
specified on the temporary table before the exchange takes place. Specifying the attribute on the empty partition
is not sufficient.

.1
fu L
Sales table
DB/-:\ May 9" 2014 populated in the
..; 1. Create external table for flat files In-Memory

May 10" 2014

May 11" 2014
May 12 2014
May 13" 2014

A4 column store

I

E2 Use CTAS command to create non-
partitioned table TMP_SALES & gather
optimizer statistic

B ﬁ 3. Set INMEMORY attribute on
QHESAS | 4. Populate TMP_SALES in column store

5. Alter table Sales exchange partition May_15_2014
with table tmp_sales

May 15" 2014

Figure 17. Five steps necessary to complete a partition exchange load on an INMEMORY table

Transaction Processing

Single row data change operations (DML) execute via the buffer cache (OLTP style changes), just as they do
without Database In-Memory enabled. If the object in which the DML operations occurs is populated in the IM
column store, then the changes are reflected in the IM column store as they occur. The buffer cache and the
column store are kept transactionally consistent via the In-Memory Transaction Manager. All logging is done on
the base table just as it was before, no logging is needed for the In-Memory Column store.

For each IMCU in the IM column store, a transaction journal is automatically created and maintained (see figure
18). When a DML statement changes a row in an object that is populated into the IM column store, the
corresponding entries for that row is marked stale in the IMCU and a copy of the new version of the row is added
to the in-memory transaction journal. The original entries in the IMCU are not immediately replaced in order to
provide read consistency and maintain data compression. Any transaction executing against this object in the IM
column store that started before the DML occurred, needs to see the originial version of the entries. Read
consistency in the IM column store is managed via System Change Numbers (SCNs) just as it is without
Database In-Memory enabled.

Memory
IMCU
(" JOURNAL
(
(
Column
Format

Figure 18. Each IMCU in the IM column store contains a subset of rows from an object & a transaction journal

When a query with a newer SCN is executed against the object, it will read all of the entries for the columns in
the IMCU except the stale entries. The stale entries will be retrieved either from the transaction journal or from
the base table (buffer cache).

Repopulation

The more stale entries there are in an IMCU, the slower the scan of the IMCU will become. Therefore Oracle
Database will repopulate an IMCU when the number of stale entries in an IMCU reaches a staleness threshold. .
The staleness threshold is determined by heuristics that take into account the frequency of IMCU access and the
number of stale rows in the IMCU. Repopulation is more frequent for IMCUs that are accessed frequently or
have a higher percentage of stale rows. The repopulation of an IMCU is an online operation executed by the
background worker processes. The data is available at all times and any changes that occur to rows in the IMCU
during repopulation are automatically recorded.

In addition to the standard repopulation algorithm, there is another algorithm that attempts to clean all stale
entries using a low priority background process. The IMCO (In-Memory Coordinator) background process may
also instigate trickle repopulation for any IMCU in the IM column store that has some stale entries but does not
currently meet the staleness threshold. Trickle repopulate is a constant background activity.

The IMCO wakes up every two minutes and checks to see if any population tasks need to be completed. For
example, the INMEMORY attribute has just been specified with a PRIORITY sub-clause on a new object. The
IMCO will also check to see if there are any IMCUs with stale entries in the IM column store. If it finds some it will
trigger the worker processes to repopulate them. The number of IMCUs repopulated via trickle repopulate in a
given 2 minute window is limited by the new initialization parameter

INMEMORY_ TRICKLE_REPOPULATE_SERVERS_PERCENT. This parameter controls the maximum percentage of
time that worker processes can participate in trickle repopulation activities. The more worker processes that
participate, the more IMCUs that can be trickle repopulated, however the more worker processes that participate
the higher the CPU consumption. You can disable trickle repopulation altogether by setting

INMEMORY TRICKLE REPOPULATE SERVERS PERCENT to 0.

Overhead of Keeping IM Column Store Transactionally Consistent

The overhead of keeping the IM column store transactionally consistent will vary by application based on a
number of factors including: the rate of change, the in-memory compression level chosen for a table, the location
of the changed rows, and the type of operations being performed. Tables with higher compression levels will
incur more overhead than tables with lower compression levels.

Changed rows that are co-located in the same block will incur less overhead than changed rows that are spread
randomly across a table. Examples of changed rows that are co-located in the same blocks are newly inserted
rows since the database will usually group these together. Another example is data that is loaded using a direct
path load operation.

For tables that have a high rate of DML, MEMCOMPRESS FOR DML is recommended, and, where possible, it is
also recommended to use partitioning to localize changes within the table. For example, range partitioning can
be used to localize data in a table by date so most changes will be confined to data stored in the most recent
partition. Date range partitioning also provides many other manageability and performance advantages.

The In-Memory Column Store On RAC

Each node in a RAC environment has its own IM column store. It is highly recommended that the IM column
stores be equally sized on each RAC node. Any RAC node that does not require an IM column store should have
the INMEMORY SIZE parameter set to 0. By default all objects populated into memory will be distributed across
all of the IM column stores in the cluster. It is also possible to have the same objects appear in the IM column
store on every node (Engineered Systems only). The distribution of objects across the IM column stores in a
cluster is controlled by two additional sub-clauses to the INMEMORY attribute: DISTRIBUTE and DUPLICATE.

In a RAC environment, an object that only has the INMEMORY attribute specified on it will be distributed across
all of the IM column stores in the cluster, effectively makes the IM column store a share-nothing architecture in a
RAC environment. How an object is distributed across the cluster is controlled by the DISTRIBUTE sub-clause.
By default, Oracle decides the best way to distribute the object across the cluster given the type of partitioning
used (if any). Alternatively, you can specify DISTRIBUTE BY ROWID RANGE to distribute by rowid range,
DISTRIBUTE BY PARTITION to distribute partitions to different nodes, or DISTRIBUTE BY SUBPARTITION
to distribute sub-partitions to different nodes.

ALTER TABLE lineorder INMEMORY DISTRIBUTE BY PARTITION;
Figure 19. This command distributes the lineorder tables across the IM column stores in the cluster by partition.

DISTRIBUTE BY PARTITION or SUBPARTITION js recommended if the tables are partitioned or sub-
partitioned by HASH and a partition-wise join plan is expected. This will allow each partition join to be co-located

within a single node. DISTRIBUTE BY ROWID RANGE can be used for non-partitioned tables or for partitioned
table where DISTRIBUTE BY PARTITION would lead to a data skew.

If the object is very small (consists of just 1 IMCU), it will be populated into the IM column store on just one node
in the cluster.

Since data populated in-memory in a RAC environment is affinitized to a specific RAC node, parallel server
processes must be employed to execute a query on each RAC node against the piece of the object that resides
in that node’s IM column store. The query coordinator aggregates the results from each of the parallel server
processes together before returning them to the end user’s session. In order to ensure the parallel server
processes are distributed appropriately across the RAC cluster, you must use Automatic Degree of Parallelism
(AutoDOP), so the query coordinator is IMCU instance location aware.

If AutoDOP is not used, and the parallel degree is specified manually (via a hint or parallel attribute on a table),
its possible not all of the data will be read from the IM column store as the parallel server processes may not be
started on the appropriate nodes and we do not ship IMCUs across a RAC cluster.

If a DML statement is issued against an object on the node where the object or that piece of the object resides in
the IM column store, the corresponding row in the IM column store is marked stale and a copy of the new row is
added to the transaction journal within that IMCU. However if the DML statement is issued on a different node,
then cache fusion will be used to keep the IM column store transactionally consistent by marking the column
entries in the database block with the changed row stale in the corresponding IM column store on the remote
node.

In-Memory Fault Tolerance

Given the shared nothing architecture of the IM column store in a RAC environment, some performance sensitive
applications may require a fault tolerant solution. On an Engineered System it is possible to mirror the data
populated into the IM column store by specifying the DUPLICATE sub-clause of the INMEMORY attribute. This
means that each IMCU populated into the IM column store will have a mirrored copy placed on one of the other
nodes in the RAC cluster. Mirroring the IMCUs provides in-memory fault tolerance as it ensures data is still
accessible via the IM column store even if a node goes down. It also improves performance, as queries can
access both the primary and the backup copy of the IMCU at any time.

el E

@~ IMCU duplicated on another
node in RAC cluster

R [——————a [———————u=
[[T T | e T T

!
| f

] [[=
il

Figure 20. Objects in the IM column store on Engineered Systems can be mirrored to improve fault tolerance

Should a RAC node go down and remain down for some time, the only impact will be the re-mirroring of the
primary IMCUs located on that node. Only if a second node were to go down and remain down for some time
would the data have to be redistributed.

If additional fault tolerance is desired, it is possible to populate an object into the IM column store on each node
in the cluster by specifying the DUPLICATE ALL sub-clause of the INMEMORY attribute. This will provide the

highest level of redundancy and provide linear scalability, as queries will be able to execute completely within a
single node.

ALTER TABLE lineorder INMEMORY DUPLICATE ALL;
Figure 21. This command ensures each IMCU of the lineorder table will appear in all IM column store in the cluster

The DUPLICATE ALL option may also be useful to co-locate joins between large distributed fact tables and
smaller dimension tables. By specifying the DUPLICATE ALL option on the smaller dimension tables a full copy
of these tables will be populated into the IM column store on each node.

The DUPLICATE sub-clause is only applicable on an Oracle Engineered System and will be ignored if specified
elsewhere.

If a RAC node should go down on a non-Engineered System, the data populated into the IM column store on that
node will no longer be available in-memory on the cluster. Queries issued against the missing pieces of the
objects will not fail. Instead they will access the data either from the buffer cache or storage, which will impact
the performance of these queries. Should the node remain down for some time, the objects or pieces of the
objects that resided in the IM column store on that node will be populated on the remaining nodes in the cluster
(assuming there is available space). In order to minimize the impact on performance due to a downed RAC node,
it is recommended that some space be left free in the IM column store on each node in the cluster.

Note that data is not immediately redistributed to other nodes of the cluster immediately upon a node or instance
failure because it is very likely that the node or instance will be quickly brought back into service. If data was
immediately redistributed, the redistribution process would add extra workload to the system that then would be
undone when the node or instance returns to service. Therefore the system will wait for a few tens of minutes
before initiating data redistribution. Waiting allows the node or instance time to rejoin the cluster.

When the node rejoins the cluster data will be redistributed to the newly joined node. The distribution is done on
an IMCU basis and the objects are fully accessible during this process.

The In-Memory Column Store in a Multitenant Environment

Oracle Multitenant1 is a new database consolidation model in which multiple Pluggable Databases (PDBs) are
consolidated within a Container Database (CDB). While keeping many of the isolation aspects of single
databases, it allows PDBs to share the system global area (SGA) and background processes of a common CDB.
Therefore, PDBs also share a single IM column store.

DW

ERP CRM .

o Container Database °

Shared memory and background
Ellglg Q|gug processes

Self-contained PDB for each
application

Common operations performed at
CDB level

Figure 22. Three PDBs in a single Oracle Database 12c Container Database

' More information on Oracle Multitenant can be found in the white paper Oracle Multitenant

20

The total size of the IM column store is controlled by the INMEMORY STIZE parameter setting in the CDB. Each
PDB specifies how much of the shared IM column store it can use by setting the INMEMORY STIZE parameter.
Not all PDBs in a given CDB need to use the In-Memory column store. Some PDBs can have the

INMEMORY SIZE parameter set to 0, which means they won't use the In-Memory column store at all.

It is not necessary for the sum of the PDBs’ INMEMORY SIZE parameters to be less than or equal to the size of
the INMEMORY SIZE parameter on the CDB. It is possible for the PDBs to over subscribe to the IM column
store. Over subscription is allowed to ensure valuable space in the IM column store is not wasted should one of
the pluggable databases be shutdown or unplugged. Since the INMEMORY SIZE parameter is static (requires a
database instance restart for changes to be reflected) it is better to allow the PDBs to over subscribe, so all of the
space in the IM column store can be used.

However, it is possible for one PDB to starve another PDB of space in the IM column store due to this over
subscription. If you don’t expect any PDBs to be shut down for extended periods or any of them to be unplugged
it is recommended that you don’t over subscribe.

INMEMORY_SIZE=16G
INMEMORY_SIZE=4G

INMEMORY_SIZE=0G

ERP CRM DW

o o o ;' INMEMORY_SIZE=20G

Container

Figure 23. PDBs specify how much of the shared IM column store they can use by setting INMEMORY SIZE parameter

Each pluggable database (PDB) is a full Oracle database in its own right, so each PDB will have its own priority
list. When a PDB starts up the objects on its priority list will be populated into the In-Memory column store in
order assuming there is available space.

Controlling the use of Oracle Database In-Memory

There are several new initialization parameters and optimizer hints that allow you to control when and how the IM
column store will be used. This section describes them all and provides guidance on which ones are core and
which are optional.

Core Initialization Parameters

Six new initialization parameters with the INMEMORY prefix have been introduced to directly control the different
aspects of the new in-memory functionality. There is also a new optimizer parameter that can have an effect on
whether queries use the IM column store or not.

21

SQL> Show Parameter INMEMORY

NAME TYPE VALUE
inmemory_clause_default string

inmemory_force string DEFAULT
inmemory _max populate_servers integer 4
inmemory_guery string ENABLE
Inmemory_size big integer 2G
inmemory_trickle_repopulate_servers_precent integer 1

Figure 24. New In-Memory Initialization parameters
INMEMORY_SIZE

As described earlier in this document, the INMEMORY _SIZE parameter controls the amount of memory allocated
to the IM column store. The default size is 0 bytes. This parameter is only modifiable at the system level and will
require a database restart to take effect. The minimum size required for the INMEMORY _SIZE parameter is 100
MB.

INMEMORY_QUERY

The Oracle Optimizer is aware of the objects populated in the IM column store and will automatically direct any
queries it believes will benefit from the in-memory column format to the IM column store. Setting

INMEMORY_ QUERY to DISABLE either at the session or system level disables the use of the IM column store
completely. It will blind the Optimizer to what is in the IM column store and it will prevent the execution layer from
scanning and filtering data in the IM column store. The default value is ENABLE,

INMEMORY_MAX_POPULATE_SERVERS

The maximum number of worker processes that can be started is controlled by the
INMEMORY MAX POPULATE_SERVERS, which is setto 0.5 X CPU_COUNT by default. Reducing the number of

worker processes will reduce the CPU resource consumed during population but it will likely extend the amount
of time it takes to do the population of the IM column store.

Additional Initialization Parameters

INMEMORY_CLAUSE_DEFAULT

The INMEMORY CLAUSE_DEFAULT parameter allows you to specify a default mode for in-memory tables by
specifying a valid set of values for all of the INMEMORY sub-clauses not explicitly specified in the syntax. The
default value is an empty string, which means that only explicitly specified tables are populated into the IM
column store.

ALTER SYSTEM SET inmemory clause default INMEMORY PRIORITY LOW

Figure 25. Using the INMEMORY CLAUSE DEFAULT parameter to mark all new tables as candidates for the IM column
store

The parameter value is parsed in the same way as the INMEMORY clause, with the same defaults if one of the
sub-clauses is not is specified. Any table explicitly specified for in-memory will inherit any unspecified values from
this parameter.

22

INMEMORY_TRICKLE_REPOPULATE_SERVERS_PERCENT

This parameter controls the maximum percentage of time that worker processes can perform trickle repopulation.
The value of this parameter is a percentage of the INMEMORY MAX POPULATE_SERVERS parameter. Setting
this parameter to 0 disables trickle repopulation; the default is 1 meaning that the worker processes will spend
one percent of their time performing trickle repopulate.

INMEMORY_FORCE

By default any object with the INMEMORY attribute specified on it is a candidate to be populated into the IM
Column Store. However, if INMEMORY _FORCE is set to OFF, then even if the in-memory area is configured, no
tables are put in memory. The default value is DEFAULT,

OPTIMIZER_INMEMORY_AWARE

As mentioned above, the optimizer is aware of the IM column store and uses in-memory specific costs when it
costs the alternative in-memory plans for a SQL statement. It is possible to disable all of the in-memory
enhancements made to the optimizer’s cost model by setting the OPTIMIZER INMEMORY_ AWARE parameter to
FALSE. Please note that even with the Optimizer in-memory enhancements disabled, you may still get an In-
Memory plan.

Optimizer Hints

The different aspects of In-Memory - in-memory scans, joins and aggregations - can be controlled at a statement
or a statement block level via the use of optimizer hints. As with most optimizer hints, the corresponding negative
hint for each of the hints described below is preceded by the word ‘NO_’. Remember that an optimizer hint is a
directive that will be followed when applicable.

INMEMORY Hint

The only thing the INMEMORY hint does is enables the IM column store to be used when the INMEMORY QUERY
parameter is set to DISABLE,

It won't force a table or partition without the INMEMORY attribute to be populated into the IM column store. If you
specify the INMEMORY hint in a SQL statement where none of the tables referenced in the statement are
populated into memory, the hint will be treated as a comment since its not applicable to this SQL statement.

Nor will the TNMEMORY hint force a full table scan via the IM column store to be chosen, if the default plan (lowest
cost plan) is an index access plan. You will need to specify the FULL hint to see that plan change take effect.

The NO_INMEMORY hint does the same thing in reverse. It will prevent the access of an object from the IM
column store; even if the object is full populated into the column store and the plan with the lowest cost is a full
table scan.

In-Memory Scan

As statement above if you wish to force an In-Memory full table scan you will need to use the FULL hint to
change the access method for an object (table, or (sub)partition).

The (NO_) INMEMORY_PRUNING hint can also influence the performance on an In-Memory scan as it controls
the use of In-Memory storage indexes. By default every query executed against the IM column store can take

advantage of the In-Memory storage indexes, which enable data pruning to occur based on the filter predicates
supplied in a SQL statement. As with most hints, the INMEMORY_PRUNING hint was introduced to help test the

new functionality. In other words the hint was originally introduced to disable the IM storage indexes.

23

In-Memory Joins

The use of a Bloom filter to convert a join into a filter is a cost-based decision. If the Optimizer doesn’t choose a
Bloom filter, it is possible to force it by using the PX_JOIN_FILTER hint.

In-Memory Aggregation

The new in-memory aggregation feature (VECTOR GROUP BY) is a cost-based query transformation, which
means it's possible to force the transformation to occur even when the Optimizer does not consider it to be the
cheapest execution plan. A VECTOR GROUP BY plan can be forced by specifying the VECTOR_TRANSFORM hint.

Monitoring and Managing Oracle Database In-Memory

Monitoring What Objects Are In The In-Memory Column Store

There are two new v$ views, vSIM_ SEGMENTS and v$IM_USER_SEGMENTS that indicate what objects are
currently populated in the IM column store.

SOL> desc v$im_segments

Name Null? Type

OWNER YARCHAR2(128)
SEGHENT_NAME YARCHARZ(128)
PARTITION_NAME YARCHAR2(128)
SEGHENT_TYPE VARCHAR2(18)
TABLESPACE_NAME YARCHAR2(30)
INHEMORY_S1ZE NUMBER

BYTES NUMBER
BYTES_NOT_POPULATED NUMBER
POPULATE_STATUS YARCHAR2(9)
INMEMORY _PRIORITY YARCHAR2(8)
INMEMORY _DISTRIBUTE YARCHAR2(15)
INMEMORY _DUPLICATE YARCHAR2(13)
INMEMORY_COMPRESSION VARCHAR2(17)
CON_ID NUMBER

Figure 26. New v$IM_SEGMENTS view

These views not only show which objects are populated in the IM column, they also indicate how the objects are
distributed across a RAC cluster and whether the entire object has been populated (BYTES NOT POPULATED).
It is also possible to use this view to determine the compression ratio achieved for each object populated in the
IM column store, assuming the objects were not compressed on disk.
SELECT v.owner, v.segment name,

v.bytes orig size,

v.inmemory size in mem size,

v.bytes / v.inmemory size comp_ ratio
FROM v$im segments v;

Figure 27. Determining the compression ratio achieved for the objects populated into the IM column store

Another new view, v$IM_COLUMN_LEVEL, contains details on the columns populated into the column store, as
not all columns in a table need to be populated into the column store.

24

SOL> SELECT table_name, column_name, inmemory_compression from|v$im_column_levels)

TABLE_NAME COLUHN_MAME INMEMORY _COMPRESSION
SALES FROD_ID HO_IHMEMORY

SALES CUST_ID TEFAULT

SALES TIME_ID DEFAULT

SALES CHAMNEL _ID LEFAULT

SALES FROMO_ID DEFAULT

SALES QUANTITY_SOLD TEFAULT

SALES AMDUNT_SOLD DEFAULT

Figure 28. The PROD_ID column was not populated into the IM column store

USER_TABLES

A new Boolean column called INMEMORY has been added to the * TABLES dictionary tables to indicate which
tables have the INMEMORY attribute specified on them.

SOL> Select table_name, inmemory From user_tables:

TABLE _NAME INMEMORY
SALES

COSTS

SALES_TRANSACTIONS_EXT DISABLED
TIMES DISABLED
CHANMELS ENRELED
PROMOTIONS DISABLED
COUNTRIES DISABLED
CUSTOMERS ENAELED
PRODUCTS ENAELED

Figure 29. New INMEMORY column added to * TABLES to indicate which tables have INMEMORY attribute

In the example above you will notice that two of the tables — COSTS and SALES — don’t have a value for the
INMEMORY column. The INMEMORY attribute is a segment level attribute. Both COSTS and SALES are partitioned
tables and are therefore logical objects. The INMEMORY attribute for these tables will be recorded at the partition
or sub-partition level in *_TAB_ (SUB) PARTITIONS.

Three additional columns — INMEMORY PRIORITY, INMEMORY DISTRIBUTE, and INMEMORY COMPRESSION
— have also been added to the *_TABLES views to indicate the current In-Memory attributes for each table.

Managing IM Column Store Population CPU consumption

The initial population of the IM column store is a CPU intensive operation, which can affect the performance of
other workloads running concurrently. You can use Resource Manager2 to control the CPU usage of IM column
store population operations and change their priority as needed.

To do this, enable CPU Resource Manager by enabling one of the out-of-box resource plans, such as
default_plan, or by creating your own resource plan. By default, in-memory population is run in the ora$autotask
consumer group, except for on-demand population, which runs in the consumer group of the user that triggered
the population. If the ora$autotask consumer group doesn’t exist in the resource plan, then the population will run
in OTHER_GROUPS, The other operations in ora$autotask include automated maintenance operations like
gathering statistics and segment analysis.

% More information on using Oracle Database Resource Manager can be found in the white
paper Using Oracle Resource Manager

25

The SET_CONSUMER_GROUP_MAPPING procedure can be used to change the consumer group for in-memory
population.

BEGIN
dbms_resource manager .Set_consumer group mapping (
attribute 'ORACLE_FUNCTION'
value ' INMEMORY '
consumer group 'BATCH GROUP')
END

Figure 30. Changing the Resource Manager consumer group of the INMEMORY operation

26

Conclusion

Oracle Database In-Memory transparently accelerates analytic queries by orders of magnitude, enabling real-
time business decisions. It dramatically accelerates data warehouses and mixed workload OLTP environments.
The unique "dual-format" approach automatically maintains data in both the existing Oracle row format for OLTP
operations, and in a new purely in-memory column format optimized for analytical processing. Both formats are
simultaneously active and transactionally consistent. Embedding the column store into Oracle Database ensures
it is fully compatible with ALL existing features, and requires absolutely no changes in the application layer. This
means you can start taking full advantage of it on day one, regardless of the application

27

ORACLE

Oracle Corporation, World Headquarters Worldwide Inquiries
500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

CONNECT WITH US
n blogs.oracle.com/in-memory
»

H facebook.com/oracle

u twitter.com/db-inmemory

E oracle.com

Hardware and Software, E d to Work Togeth

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0415

White Paper Oracle Database In-Memory
July 2015
Author: Maria Colgan

1 | ORACLE DATABASE IN-MEMORY

