

Oracle GoldenGate Performance Best Practices
O R A C L E W H I T E P A P E R | M A Y 2 0 1 7

2 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Table of Contents Table of Contents

 2

Introduction 4

Oracle Software 5

Database Configuration 5

Configuring the Source Database 5

Configuring the Target Database 8

Oracle GoldenGate Configuration 9

Extract Configuration 9

Data Pump Configuration 9

Replicat Configuration 13

Configure the GoldenGate Heartbeat Table 14

Database File System (DBFS) Configuration 16

Data Gathering for Oracle GoldenGate Performance 16

Oracle GoldenGate Performance Tuning Methodology 17

Conclusion 26

Appendix A – Oracle GoldenGate Performance Information Gathering 27

Oracle GoldenGate Latency 27

Determining Latency for Integrated Extract 27

Determining Latency for Integrated Replicat 27

Oracle GoldenGate Report Files and Error Logs 28

Automatic Workload Repository and Active Session History 28

CPU Data 29

3 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

I/O Data 29

Oracle Streams Performance Advisor (Integrated Extract and Integrated

Replicat) 30

Integrated Capture and Integrated Replicat Healthcheck 33

Appendix B – Considerations for Non-Integrated GoldenGate Replicat Processes 34

Use of BATCHSQL 34

Dividing Workload Between Multiple Replicats 35

Appendix C – Displaying Real-time SPADV Statistics 40

4 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Introduction

The strategic integration of Oracle Exadata Database Machine and Oracle Maximum Availability

Architecture (MAA) best practices (Exadata MAA) provides the best and most comprehensive Oracle

Database availability solution. Oracle GoldenGate is a key component of MAA, providing a logical

replication solution for fast platform migration and a near zero downtime solution for application and

database upgrades. It complements the rest of Oracle’s MAA solution that tolerates failures and

enables online maintenance and rolling upgrade through Oracle Real Application Clusters (Oracle

RAC), Oracle Automatic Storage Management (Oracle ASM), and Oracle Active Data Guard.

This white paper describes best practices for configuring Oracle GoldenGate for the best performance,

simple manageability, and stability for Oracle databases. Non-Oracle databases are not covered in this

paper.

Refer to “Oracle GoldenGate with Oracle Real Application Clusters Configuration” MAA white paper at

the link below for the initial configuration of Oracle GoldenGate, including installation, Oracle Database

File System (DBFS) configuration for shared Oracle GoldenGate files, and Oracle Real Application

Clusters (Oracle RAC) services configuration.

http://www.oracle.com/technetwork/database/features/availability/maa-goldengate-rac-2007111.pdf

http://www.oracle.com/technetwork/database/features/availability/maa-goldengate-rac-2007111.pdf

5 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Oracle Software

Use Oracle GoldenGate Release 12.2.0 or later to take advantage of increased functionality and enhanced

performance features.

Starting with Oracle GoldenGate Release 12.1.2, Replicat can operate in integrated mode for improved scalability

within Oracle target environments. The apply processing functionality within the Oracle database is leveraged to

automatically handle referential integrity and data description language (DDL) so that the operations are applied in

the correct order.

Extract can also be used in integrated capture mode with an Oracle database, introduced with Oracle GoldenGate

Release 11.2.1. Extract integrates with an Oracle database log mining server to receive change data from the

database in the form of logical change records (LCRs). Extract can be configured to capture from a local or

downstream mining database. Because integrated capture mode is fully integrated with the database, no additional

setup is required to work with Oracle RAC, Oracle ASM, Transparent Data Encryption (TDE), and data compression,

which greatly simplifies setup without sacrificing performance.

The latest release of Oracle GoldenGate can be downloaded from My Oracle Support, Patches and Updates.

It is recommended that you use at minimum Oracle Database 11g Release 2 (11.2.0.4) to take advantage of both

integrated Extract and integrated Replicat GoldenGate features. Refer to Latest GoldenGate/Database

(OGG/RDBMS) Patch recommendations (Doc ID 2193391.1).

Database Configuration

This section describes the configuration best practices for the source and target databases used in an Oracle

GoldenGate replicated environment. It is assumed that the Extract and Data Pump processes are both running on

the source environment, and one or more Replicat processes are running on the target database. In an active-active

bi-directional Oracle GoldenGate environment, or when the target database may be converted to a source database,

combine both target and source database configuration steps.

Configuring the Source Database

Do the following tasks/steps to configure the source database

1. Run the database in ARCHIVELOG mode.

Oracle GoldenGate Extract mines the Oracle redo for data that can be replicated. The database must be running

in ARCHIVELOG mode. When using Extract in integrated capture mode, the LogMiner server can seamlessly

mine redo from the log buffer, online, and archive log files.

2. Enable force logging mode.

In order to ensure that the required redo information is contained in the Oracle redo logs for segments being

replicated, it is important to override any NOLOGGING operations which would prevent the required redo

information from being generated. If you are replicating the entire database, enable database force logging mode.

Check the existing force logging status by executing the following command:

6 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

SQL> SELECT FORCE_LOGGING_MODE FROM V$DATABASE;

If the database is currently not in force logging mode, enable force logging by executing the following commands:

SQL> ALTER DATABASE FORCE LOGGING;

SQL> ALTER SYSTEM SWITCH LOGFILE;

There are cases when you do not want to replicate some application data that are loaded with NOLOGGING

operations. In those cases, isolate the tables and indexes into separate tablespaces, then enable and disable

logging according to your requirements. You must first disable database force logging mode by executing the

following commands:

SQL> ALTER DATABASE NO FORCE LOGGING;

SQL> ALTER TABLESPACE <tablespaces_replicated> FORCE LOGGING;

SQL> ALTER TABLESPACE <tablespaces_not_replicated> NOLOGGING;

It is important to test the effects of force logging mode on database performance before configuring Oracle

GoldenGate.

3. Enable supplemental logging.

Oracle GoldenGate requires minimal supplemental logging enabled at the database level along with additional

key column values to be logged into redo to allow the same updated or deleted rows manipulated on the source

database to be found on the target database.

1. Perform the following steps to verify and enable database minimal supplemental logging:

SQL> SELECT supplemental_log_data FROM v$database;

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

SQL> SELECT supplemental_log_data FROM v$database;

2. Add supplemental logging at the schema level using the Oracle GoldenGate command ADD

SCHEMATRANDATA.

For more information about creating supplemental log groups, refer to Oracle GoldenGate Installing and

Configuring Oracle GoldenGate for Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-5DA7C3DC-5D87-4A8B-AD23-

6EF587A5CF41.htm#GWURF265

It is recommended to test and monitor any overheads added to the database by supplemental logging using a

production workload, before enabling supplemental logging in your production environment.

4. Configure the Streams pool.

When using Extract in integrated capture mode, an area of Oracle memory called the Streams pool must be

configured in the System Global Area (SGA) of the database.

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-5DA7C3DC-5D87-4A8B-AD23-6EF587A5CF41.htm%23GWURF265
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-5DA7C3DC-5D87-4A8B-AD23-6EF587A5CF41.htm%23GWURF265

7 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

The size requirement of the Streams pool for Extract in integrated capture mode is based on the number of

integrated Extracts and the integrated capture mode parameter, MAX_SGA_SIZE, which controls the amount of

shared memory used by the LogMiner server. The default value is 1GB which is adequate in almost all cases.

This is not the same as the database initialization parameter, SGA_MAX_SIZE.

Set the STREAMS_POOL_SIZE initialization parameter for the database to the following value:

(MAX_SGA_SIZE * # of integrated Extracts) + 25% head room

For example, using the default values for the MAX_SGA_SIZE with two integrated Extracts:

(1GB * 2) * 1.25 = 2.50GB

STREAMS_POOL_SIZE = 2560M

5. Configure database parameters for redo log read performance.

Set the following database initialization parameters:

_log_read_buffers = 64

_log_read_buffer_size = 128

These two database initialization parameters can improve performance of reading the redo log files by the

LogMiner server by increasing the number and size of read buffers. These parameters also affect the same read

buffers that are used during database media recovery, of which the performance may also improve.

6. Install the UTL_SPADV package.

The UTL_SPADV PL/SQL package provides subprograms to collect and analyze statistics for the LogMiner server

processes. The statistics help identify any current areas of contention such as CPU or I/O. To install the

UTL_SPADV package, as the Oracle GoldenGate administrator user on the source database, run the following

SQL script:

SQL> @$ORACLE_HOME/rdbms/admin/utlspadv.sql

Later in this white paper, there is an example using the UTL_SPADV package to monitor the LogMiner server

performance in real time. For more information about the UTL_SPADV package, refer to Oracle Database

PL/SQL Packages and Types Reference at

http://docs.oracle.com/database/122/ARPLS/UTL_SPADV.htm#ARPLS883

For additional database configuration requirements, refer to Installing and Configuring Oracle GoldenGate for

Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-

6062CE7F532E.htm#GIORA121

http://docs.oracle.com/database/122/ARPLS/UTL_SPADV.htm%23ARPLS883
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-6062CE7F532E.htm%23GIORA121
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-6062CE7F532E.htm%23GIORA121

8 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Configuring the Target Database

Do the following tasks/steps to configure the target database.

1. Run the database in ARCHIVELOG mode.

Although Oracle GoldenGate does not require that the target database run in ARCHIVELOG mode, Oracle

recommends doing so for high availability and recoverability. If the target database is configured to fail over or

switch over to a source database, ARCHIVELOG mode is required. The target database should also be involved

in a backup strategy to match the recovery options on the source database. In the event of a failure on the source

environment, and if an incomplete recovery is carried out, the target database also needs recovery to make sure

that the replicated objects are not from a point in time ahead of the source.

2. Enable force logging.

When replicating bi-directionally, or if the source and target database need to switch roles, force logging should

be enabled to prevent missing redo data required by Oracle GoldenGate Extract.

For instructions about how to enable force logging mode, refer to “Source Database” on page 5.

3. Configure the Streams pool.

When using integrated Replicat the Streams pool must be configured. If using non-integrated Replicat the

Streams pool is not necessary.

The size requirement of the Streams pool for integrated Replicat is based on a single parameter,

MAX_SGA_SIZE. The MAX_SGA_SIZE parameter defaults to INFINITE which allows the Replicat process to

use as much of the Streams pool as possible. Oracle does not recommend setting the MAX_SGA_SIZE

parameter.

Set the STREAMS_POOL_SIZE initialization parameter for the database to the following value:

(1GB * # of integrated Replicats) + 25% head room

For example, on a system with one integrated Replicat process the calculation would be as follows:

(1GB * 1) * 1.25 = 1.25GB

STREAMS_POOL_SIZE = 1280M

4. Configure the target SGA parameters.

The database parameters controlling the size of the shared memory components in the System Global Area

(SGA) must be configured similarly to the source database of the data being replicated. This ensures that no

unexpected drop in performance is seen due to incorrectly sized memory. For example, if the source database is

configured with an 11GB buffer cache, the same performance cannot be expected with the same workload using

a 2GB buffer cache.

If replicating a subset of the source database the target SGA may be sized smaller. If there is additional database

work carried out on the target database, such as increased reporting applications, the SGA should be increased

accordingly.

9 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

For additional database configuration requirements, refer to Installing and Configuring Oracle GoldenGate for

Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-

6062CE7F532E.htm#GIORA121

Oracle GoldenGate Configuration

This section describes the configuration best practices for Oracle GoldenGate components Extract, Data Pump, and

Replicat.

Extract Configuration

Oracle recommends using Oracle GoldenGate Release 12.2.0.1 or later with the integrated capture mode Extract to

take advantage of the integration with the LogMiner server. Integrated capture enables seamless extraction of more

data types than with classic mode Extract, such as compressed data (Basic, OLTP, and Exadata Hybrid Columnar

Compression). There is no additional configuration required for Extract to read log files stored on Oracle ASM.

RMAN’s fast recovery area policies ensure that archive logs cannot be removed until Extract no longer needs them.

When using integrated capture the default settings are appropriate for most environments. Be sure to set the

STREAMS_POOL_SIZE initialization parameter correctly, as explained in “Database Configuration” on page 5. It is

also recommended that you set the integrated Extract parameter _LOGMINER_READ_BUFFERS, which controls the

number of buffers (64KB each) used by LogMiner to read redo. These buffers are allocated from the streams pool

allotted to LogMiner and default to 64. It is recommended that you set the _LOGMINER_READ_BUFFERS to a value

of 256.

TRANLOGOPTIONS INTEGRATEDPARAMS (_LOGMINER_READ_BUFFERS 256)

Data Pump Configuration

The primary function of the Data Pump is to read the trail files created by Extract and route data to the target host.

Use the PASSTHRU parameter in the Data Pump parameter file to increase Data Pump performance and reduce

CPU usage when table names and table structures are not altered or data is being filtered. This prevents the Data

Pump from looking up table definitions from either the database or from a data definitions file. The PASSTHRU

parameter is table-specific and can be configured with a wildcard character to apply to multiple tables.

If there are tables that require mapping or data conversions, use the NOPASSTHRU parameter. Tables listed with the

NOPASSTHRU parameter must be specified after the PASSTHRU parameter, as shown in the example below.

In the following example, the PASSTHRU parameter instructs the Data Pump to pass through all tables belonging to

the SOESMALL schema, but the SOEADMIN.OPS table is processed normally.

EXTRACT dpump_1a

USERID soeadmin, PASSWORD ****

RMTHOST ggdb02, MGRPORT 8901

RMTTRAIL /home/oracle/goldengate/latest/dirdat_os/aa

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-6062CE7F532E.htm%23GIORA121
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-6062CE7F532E.htm%23GIORA121

10 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

REPORTCOUNT EVERY 15 MINUTES, RATE

PASSTHRU

TABLE SOESMALL.*;

NOPASSTHRU

TABLE SOEADMIN.OPS, WHERE (OPNO < 10);

A performance comparison test was performed to show the difference in elapsed time and CPU time with Data

Pump using the PASSTHRU and NOPASSTHRU (the default) parameters. The workload was a Swingbench online

transaction processing (OLTP) type workload with approximately 10 DML statements per transaction affecting three

tables (5 inserts, 5 updates). A total of 34 trail files were generated totaling 16GB in size.

The following graph shows the difference in elapsed time and CPU seconds used for the two tests.

There is a 6% reduction in elapsed time when using the PASSTHRU parameter, but the bigger difference is the

reduction in CPU time which is 37% less. This improvement can vary depending on the amount of data being

replicated that requires conversion or mapping by the Data Pump.

When replicating across a Wide Area Network (WAN), follow these best practices:

1. Tune TCPBUFSIZE and TCPFLUSHBYTES parameters.

The two RMTHOST parameters, TCPBUFSIZE and TCPFLUSHBYTES, are very useful for increasing the buffer

sizes and network packets sent by Data Pump over the network from the source to the target system. This is

especially beneficial for high latency networks.

It is recommended that you set these parameters to an initial value of 1MB (1,048,576 bytes) or the calculated

value, whichever is larger.

To determine a suitable value, perform the following steps:

441

309

414

196

0

50

100

150

200

250

300

350

400

450

500

Elapsed Time (secs) CPU time (secs)

NOPASSTHRU

PASSTHRU

11 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

a. Use the ping command to obtain the average round trip time (RTT).

For example:

% ping ggsoftware.com

Pinging ggsoftware.com [192.168.116.171] with 32 bytes of data:

Reply from 192.168.116.171: bytes=32 time=31ms TTL=56

Reply from 192.168.116.171: bytes=32 time=61ms TTL=56

Reply from 192.168.116.171: bytes=32 time=32ms TTL=56

Reply from 192.168.116.171: bytes=32 time=34ms TTL=56

Ping statistics for 192.168.116.171:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 31ms, Maximum = 61ms, Average = 39ms

b. Calculate the bandwidth-delay product (BDP).

For example, if the network between the source and target databases is 155 megabits per second (Mbits) and

the latency is 39ms the calculation would be as follows:

BDP = (155,000,000 / 8) * 0.039 = 755,625bytes

c. Multiply the result by 3 to determine 3xBDP.

For example:

3xBDP = 755,625 x 3 = 2,266,875

In this example, because the result is more than 1MB, set the values of TCPBUFSIZE and TCPFLUSHBYTES to

2,266,875.

The parameters are set in the Data Pump parameter file. For example:

RMTHOST target, MGRPORT 7809, TCPBUFSIZE 2266875, TCPFLUSHBYTES 2266875

The maximum socket buffer size for non-Windows systems is usually limited by default.

Ask your system administrator to increase the maximum socket buffer size on the source and target systems so that

Oracle GoldenGate can increase the buffer size configured with the TCPBUFSIZE parameter.

2. Use Data Pump compression if network bandwidth is constrained and when CPU headroom is available.

Use Data Pump compression only if network bandwidth is insufficient or network latency is high. Before the Data

Pump sends the trail file data to the Collector process on the target database, data is compressed on the source.

The Collector process then uncompresses that data upon receipt, and the uncompressed data is written to the

target database trail files.

The compression ratio is dependent on the type of data contained in the trail files. For example, scalar data types

like VARCHAR2, DATE, and NUMBER compress better than compressed LOB column data. Enabling compression

uses more CPU for each Data Pump process on the source and for the Collection server process on the target

12 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

system. Compression is enabled in the Data Pump parameter file using the RMTHOST COMPRESSION

parameter.

As an example of the Data Pump performance benefits, with a 90ms network latency using a 10 Gigabit network

connection between two servers, and trail file data containing just scalar data types, the effects of adding

compression is shown in the following graph.

The graph shows a 64% reduction in time when compressions is enabled, with a 70% increase in CPU consumed

by the source Data Pump and the target Collector processes combined.

With a lower network latency of 15ms, there was a performance degradation of 14%, with a 2X increase in CPU

consumed by the source Data Pump and the target Collector processes combined when Data Pump compression

was enabled, as shown in the following graph.

1419

503

912
854

0

200

400

600

800

1000

1200

1400

1600

Elapsed Time (secs) CPU Time (secs)

Uncompressed

Compressed

601 588
686

1217

0

200

400

600

800

1000

1200

1400

Elapsed Time (secs) CPU Time (secs)

Uncompressed

Compressed

13 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

It is recommended that you test Data Pump compression in your current environment before deciding if it will be

of benefit.

For more information about the RMTHOST COMPRESSION parameter for Data Pump, refer to Reference Guide

for Oracle GoldenGate for Windows and UNIX at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-4675F779-D83C-4AF6-9B0A-

C811CC715F15.htm#GWURF631

Replicat Configuration

The Oracle GoldenGate Replicat processes running on the target database read the trail files and apply the data

using SQL DML statements on the replicated objects.

The following are recommendations to optimize Replicat performance.

1. Configure integrated Replicat.

Oracle recommends using integrated Replicat, introduced in Oracle GoldenGate Release 12.1 and Oracle

Database 11g Release 2 (11.2.0.4). Integrated Replicat leverages the database apply process functionality.

Referential integrity is maintained and DDL operations are automatically applied. This alleviates the database

administrator from having to understand how to partition tables between Replicat processes based on foreign key

constraints, or from having to ensure that the correct Replicat handles the DDL for tables.

Integrated Replicat offers automatic parallelism which automatically increases or decreases the number of based

on the current workload and database performance. Management and tuning of Replicat performance is simplified

because you do not have to manually configure multiple Replicat processes to distribute the tables between them.

Integrated Replicat automatically enables the asynchronous commit feature so processing can continue

immediately after each COMMIT command is issued.

For more information about integrated Replicat configuration, refer to Installing and Configuring Oracle

GoldenGate for Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-8AC69DA1-1117-47DE-BD8C-

DB3BC51A1DA1.htm#GUID-8AC69DA1-1117-47DE-BD8C-DB3BC51A1DA1

2. Set BATCHSQL in the Replicat parameter file.

By default, integrated Replicat tries to reorder and group DML statements of the same type against the same

object within each transaction, and applies the transaction DML as a batch instead of applying each DML

statement individually. Using batches can reduce the CPU and execution time of DML statements.

To increase the Replicat apply performance further, enable BATCHSQL, which groups multiple transactions into

fewer, larger transactions, batching the same DML types together. This is enabled by adding the BATCHSQL

parameter to the Replicat parameter file.

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-4675F779-D83C-4AF6-9B0A-C811CC715F15.htm%23GWURF631
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-4675F779-D83C-4AF6-9B0A-C811CC715F15.htm%23GWURF631
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-8AC69DA1-1117-47DE-BD8C-DB3BC51A1DA1.htm%23GUID-8AC69DA1-1117-47DE-BD8C-DB3BC51A1DA1
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-8AC69DA1-1117-47DE-BD8C-DB3BC51A1DA1.htm%23GUID-8AC69DA1-1117-47DE-BD8C-DB3BC51A1DA1

14 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

The following is an example from a target database AWR report, using integrated Replicat without BATCHSQL

enabled. There are 3-4 rows per execution on two of the tables.

When BATCHSQL is enabled, the rows per execution increases and the elapsed time decreases as shown below.

By adding the BATCHSQL parameter to the Replicat parameter file, which enables BATCHSQL, this small OLTP

workload example improved performance by approximately 31%.

The maximum size of each statement batch is controlled by the BATCHSQL BATCHTRANSOPS parameter. The

default size of 50 for integrated Replicat is adequate in most cases, but changing the batch size may result in

performance gains.

Setting the batch size too low or too high may result in performance degradation. Integrated Replicat applies

transactions in parallel, so setting BATCHTRANSOPS too high can result in increased dependencies between

transactions, which results in slower performance. When changing the BATCHTRANSOPS size, do so in a

controlled manner so performance with the old and new settings can be accurately compared.

For more information about the BATCHSQL parameter refer to Reference for Oracle GoldenGate Windows and

UNIX at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-2ED88418-6ACB-484D-B140-

364232EC419A.htm#GWURF404

Configure the GoldenGate Heartbeat Table

Introduced in Oracle GoldenGate release 12.2.0.1 is the built-in heartbeat table feature that provides end-to-end

replication lag views without having to manually implement your own heartbeat table. After creating the heartbeat

table using the GGSCI command ADD HEARTBEAT, it is possible to see the end-to-end replication latency by

looking at the GG_LAG database view.

To create and enable the GoldenGate heartbeat table:

1. Add the following parameter to the GLOBALS file on both the source and target GoldenGate installations to set the

heartbeat table database schema name and table naming convention.

HEARTBEATTABLE SOE.GG_HEARTBEAT

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-2ED88418-6ACB-484D-B140-364232EC419A.htm#GWURF404
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-2ED88418-6ACB-484D-B140-364232EC419A.htm#GWURF404

15 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

It is recommended that you use a schema name (SOE in this example) that is already being replicated by

GoldenGate.

2. Create the heartbeat table and the scheduler jobs to update the heartbeat table using GGSCI.

GGSCI> DBLOGIN USERID SOE, password SOE

GGSCI> ADD HEARTBEATTABLE, FREQUENCY 5

This must be carried out on both the source and target databases.

3. Confirm the scheduler job was created in the source database.

SQL> select JOB_NAME, START_DATE, LAST_START_DATE, NEXT_RUN_DATE

from dba_scheduler_jobs where job_name ='GG_UPDATE_HEARTBEATS';

Example output:

JOB_NAME

START_DATE

LAST_START_DATE

NEXT_RUN_DATE

GG_UPDATE_HEARTBEATS

16-NOV-16 03.15.44.030278 PM AMERICA/LOS_ANGELES

15-DEC-16 11.41.21.188995 AM AMERICA/LOS_ANGELES

15-DEC-16 11.41.24.000000 AM AMERICA/LOS_ANGELES

If the LAST_START_DATE and NEXT_RUN_DATE columns are not updating, manually execute the scheduler job,

connected to the database as the heartbeat table owner as shown here.

SQL> connect soe/soe

SQL> exec dbms_scheduler.run_job('GG_UPDATE_HEARTBEATS');

4. Monitor the replication on the target database.

col Lag(secs) format 999.9

col "Seconds since heartbeat" format 999.9

col "GG Path" format a32

col TARGET format a12

col SOURCE format a12

set lines 140

SELECT remote_database "SOURCE", local_database "TARGET", incoming_path "GG

Path", incoming_lag "Lag(secs)", incoming_heartbeat_age "Seconds since heartbeat"

FROM ggadmin.gg_lag;

For more information about creating the heartbeat table, refer to Reference for Oracle GoldenGate on Windows and

UNIX at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-126E30A2-DC7A-4C93-93EC-

0EB8BA7C13CB.htm#GWURF1238

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-126E30A2-DC7A-4C93-93EC-0EB8BA7C13CB.htm#GWURF1238
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-126E30A2-DC7A-4C93-93EC-0EB8BA7C13CB.htm#GWURF1238

16 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Database File System (DBFS) Configuration

When running Oracle GoldenGate on Oracle Exadata Database Machine, with Oracle RAC or Oracle Data Guard

configurations, Oracle recommends placing the shared Oracle GoldenGate files (trail files, checkpoint files, bounded

recovery files, and parameter files) on Database File System (DBFS) file systems. Using DBFS provides integration

with Cluster Ready Services (CRS) which automates DBFS file systems mounting on a surviving node in the Oracle

RAC cluster. This allows Oracle GoldenGate processes to automatically start after the required file systems have

been mounted.

For details about how to configure DBFS for optimal performance and availability, refer to the “Oracle GoldenGate

on Exadata Database Machine Configuration” MAA white paper at

http://www.oracle.com/technetwork/database/features/availability/maa-wp-gg-oracledbm-128760.pdf

Using DBFS with Oracle Data Guard and Oracle GoldenGate provides synchronization between the source and

target databases with the external files used by Oracle GoldenGate. This is important during role transitions,

especially for automatic restart of Oracle GoldenGate processes after a failover. For information about the

configuration of such an environment refer to the “Transparent Zero Data-Loss Role Transition with Oracle Data

Guard and Oracle GoldenGate” MAA white paper at

http://www.oracle.com/technetwork/database/availability/ogg-adg-zdl-2219106.pdf

Data Gathering for Oracle GoldenGate Performance

To troubleshoot Oracle GoldenGate performance there are several key pieces of information that must be gathered

and analyzed. You normally start tuning when you first encounter an unacceptable lag or latency (the time taken to

extract or apply the data from the time it was created on the source database) and the throughput decreases.

Because of the decoupled architecture of Oracle GoldenGate it is important to gather performance data on both the

source and target environments for the same time period.

The following pieces of information are necessary for Oracle GoldenGate performance analysis:

 Latency or lag time for each Oracle GoldenGate process.

 Oracle GoldenGate process report files and the ggserr.log error log.

 Automatic Workload Repository (AWR) and Active Session History (ASH) database reports.

 CPU and I/O data.

 Oracle Streams Performance Advisor (SPADV) report.

 Integrated Capture and Integrated Replicat healthcheck report.

It is recommended to use the script provided in MOS note 2262988.1 to gather all of the above information covering

the same period of time:

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=2262988.1&h=Y

http://www.oracle.com/technetwork/database/features/availability/maa-wp-gg-oracledbm-128760.pdf
http://www.oracle.com/technetwork/database/availability/ogg-adg-zdl-2219106.pdf
https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=461053.1&h=Y

17 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

The script is run on each server where Oracle GoldenGate processes are running.

Refer to Appendix A for more detailed instructions on how to manually gather these key pieces of information.

Oracle GoldenGate Performance Tuning Methodology

Before you try to diagnose slow performance in an Oracle GoldenGate environment, it is important to first

understand the flow of data between the source and target databases. The following figure shows the flow of data

between the source and target databases.

The following components are capable of contributing to a performance bottleneck:

1. Oracle log files are read by the Extract process capturing any required data for replication.

2. Extract carries out any mapping and conversion to the data and then writes it out to the trail files.

3. Data Pump reads the trail files and carries out any mapping and conversion required to the data.

4. Data Pump transfers the trail files from the source system to the target system where it is written by the Collector

process to the remote trail files.

5. Replicat reads the trail file, applies any mapping and conversions, and applies the data to the target database

using SQL statements.

The following workflow demonstrates how to determine and resolve where replication latency is introduced in Oracle

GoldenGate and, consequently, where the performance bottleneck is present. Performance tuning is an iterative

process. Once something has been changed in the environment, lag needs to be monitored and then the tuning

process repeated.

1. Locate where the latency is first reported, moving from Extract to Replicat.

Move from the source to target side, using the previously recommended method to gather data to view the Oracle

GoldenGate process latency (database queries, ggserr.log, ggsci INFO *, LAG EXTRACT, or LAG

REPLICAT).

Once the process with lag has been determined, continue to the next step.

18 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

The following example shows output from the ggserr.log file for an Extract and Data Pump process with

increasing lag.

2014-11-01 00:47:30 INFO OGG-01026 Oracle GoldenGate Capture for Oracle,

dpump_1a.prm: Rolling over remote file /goldengate/latest/dirdat_os/aa000031.

2014-11-01 00:47:37 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,

mgr.prm: Lag for EXTRACT DPUMP_1A is 00:00:04 (checkpoint updated 00:00:02 ago).

2014-11-01 00:47:37 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,

mgr.prm: Lag for EXTRACT EXT_1A is 00:00:21 (checkpoint updated 00:00:08 ago).

2014-11-01 00:48:37 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,

mgr.prm: Lag for EXTRACT DPUMP_1A is 00:00:21 (checkpoint updated 00:00:08 ago).

2014-11-01 00:48:37 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,

mgr.prm: Lag for EXTRACT EXT_1A is 00:00:27 (checkpoint updated 00:00:01 ago).

It is interesting to note that when Extract lag increases, so does Data Pump lag. This implies that if you resolve

the Extract lag, the Data Pump lag also decreases. Depending on when the last checkpoint of each process

occurred, the lag values may differ.

2. Latency is reported for an Extract process (not a Data Pump Extract).

a. If the Extract process (classic or integrated capture mode) is reaching maximum CPU (90-100%) as shown in

top, create an additional Extract process and partition the work to be extracted between them. When dividing

workload between Extract processes you must also create additional Data Pump and Replicat processes.

For example:

top - 18:22:41 up 184 days, 3:52, 4 users, load average: 1.00, 0.66, 0.37

Cpu(s): 7.8%us, 1.3%sy, 0.0%ni, 90.5%id, 0.5%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 99060552k total, 61840724k used, 37219828k free, 3399436k buffers

Swap: 25165816k total, 0k used, 25165816k free, 24251384k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 79023 oracle 20 0 697m 61m 31m R 98.8 0.1 5:17.75

/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext_1a.prm

 79034 oracle 20 0 697m 61m 31m S 52.1 0.1 2:46.17

/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext_1a.prm

 78929 oracle 20 0 232m 24m 14m R 38.8 0.0 2:04.78

/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext_1a.prm

To ensure data integrity, parent and child tables with referential integrity relationships should be processed by

the same Extract process.

b. If one or more of the LogMiner preparer processes are reaching maximum CPU (90-100%), the LogMiner

Reader (LMR) has a high percentage of flow control, and if there is available idle time for the LogMiner builder

(LMB) process, increase the Extract PARALLELISM parameter (described earlier). This shows up in top and

SPADV.

The following is an example of SPADV output.

PATH 2 RUN_ID 42 RUN_TIME 2013-MAR-21 15:16:16 CCA Y

|<C> OGG$CAP_EXT_1A 125182 125147 94239 LMR 0% 80% 20% "CPU + Wait for CPU" LMP

(1) 0% 0% 100% "CPU + Wait for CPU" LMB 60% 0% 40% "CPU + Wait for CPU" CAP 60%

0% 40% "CPU + Wait for CPU" |<Q> "STREAMSADMIN"."OGG$Q_EXT_1A" 125126 0.01 564

|<A> OGG$EXT_1A 0.01 0.01 0 | NO BOTTLENECK IDENTIFIED

19 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

The following is an example of top output.

top - 15:16:09 up 71 days, 45 min, 4 users, load average: 2.13, 1.39, 0.95

Cpu(s): 13.8%us, 1.3%sy, 0.0%ni, 84.7%id, 0.2%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 99060552k total, 58834488k used, 40226064k free, 2644064k buffers

Swap: 25165816k total, 0k used, 25165816k free, 21705628k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 86969 oracle 20 0 18.0g 520m 509m R 99.7 0.5 8:03.73 ora_ms02_GGS1

 86955 oracle 20 0 18.1g 543m 520m R 55.7 0.6 4:33.26 ora_cp03_GGS1

 87064 oracle 20 0 446m 75m 18m R 48.9 0.1 3:58.58

/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext_1a.prm

The following query can be used to identify the LMP process identifiers.

SELECT c.capture_name, lp.spid

 FROM V$LOGMNR_PROCESS lp, DBA_CAPTURE c

 WHERE lp.session_id=c.logminer_id

 AND lp.role='preparer';

c. If there are I/O waits in the source database for log file reads (for example, if AWR shows ‘log file sequential

read’ > 20ms), place the log files on a faster I/O system.

d. If there are I/O wait times on the Oracle GoldenGate trail file location, move the trail files to a higher performing

file system.

When trail files are located on non-DBFS storage, use iostat to quickly identify the issue. For example:

$ iostat –x 30

Time: 12:35:00 PM

avg-cpu: %user %nice %system %iowait %steal %idle

 17.03 0.00 3.47 7.83 0.00 71.68

Device: wrqm/s r/s w/s wkB/s avgrq-sz avgqu-sz await svctm %util

sda2 8361.40 0.00 445.60 38630.40 173.39 88.49 192.18 1.38 61.48

Time: 12:35:30 PM

avg-cpu: %user %nice %system %iowait %steal %idle

 14.76 0.00 2.31 8.81 0.00 74.12

Device: wrqm/s r/s w/s wkB/s avgrq-sz avgqu-sz await svctm %util

sda2 18551.60 0.00 994.80 77213.60 155.23 187.03 175.34 1.01 100.00

If trail files are located on a DBFS file system, a combination of iostat and Automatic Workload Repository

(AWR) reports from the DBFS instance can similarly identify any I/O contention.

e. If you are using integrated Extract and if there are high background waits (>25%) in the source database AWR

report for ‘LogMiner preparer: memory’ or ‘LogMiner reader: buffer’, increase the MAX_SGA_SIZE Extract

parameter by 25%. Make sure the STREAMS_POOL_SIZE initialization parameter is sized large enough.

Memory sizing was discussed earlier in this white paper.

The following is an example from an AWR report.

20 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

3. Latency is reported for a Data Pump process.

a. If the Data Pump process is reaching maximum CPU (90-100%) as shown in top, using the PASSTHRU

parameter helps decrease CPU consumption (detailed previously in this white paper). If this does not help due

to data mappings, create an additional Data Pump process and partition the work between them. This should

only occur when the Data Pump process processing many transformations or conversions. You must also

configure multiple Replicat processes on the target database to apply trail files from the different Data Pumps.

The following example shows top output.

top - 14:47:27 up 8 days, 22:47, 3 users, load average: 0.83, 0.38, 0.14

Cpu(s): 4.0%us, 0.4%sy, 0.0%ni, 95.5%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st

Mem: 99060552k total, 61544204k used, 37516348k free, 1390584k buffers

Swap: 25165816k total, 0k used, 25165816k free, 26834216k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 34485 oracle 20 0 249m 32m 15m R 99.3 0.0 2:18.08 /u01/

goldengate/latest/extract PARAMFILE

b. If there are I/O wait times on the Oracle GoldenGate trail file location, move the trail files to a higher performing

file system. This problem also appears in Extract performance. For an example, refer to item 2d in the

preceding section.

c. If there are I/O wait times on the Oracle GoldenGate trail file location on the target database, move the trail files

to a higher performing file system. This problem also appears in Replicat trail file reading performance

(discussed later in this white paper). For an example, refer to item 2d in the preceding section.

d. If there is a network bandwidth or high latency problem identified by operating system utilities or network

monitoring tools, consider enabling Data Pump compression as detailed in “Data Pump Configuration” on page

9.

4. Latency is reported for a Replicat process.

a. If a Replicat or the network receiver process (ANR) is reaching maximum CPU (90-100%) as shown in top,

create an additional Replicat process and partition the work between the new process and the bottlenecked

Replicat process.

Before dividing the work between multiple Replicat processes, consider the following:

» Referential integrity between tables

To ensure data integrity, parent and child tables with referential integrity relationships should be processed

by the same Replicat process. For tables that are not part of referential integrity constraints, (for example,

21 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Peoplesoft Payroll tables), assigning tables among multiple Replicat processes becomes an easier task by

evenly distributing the load among each Replicat process.

» Handling of DDL statements

In order to avoid locking conflicts between Replicat processes, it is very important to understand the nature of

DDL statements that occur against replicated objects. You must apply DDL with the same Replicat process

that applies DML for the table. If not configured in this way, the Replicat processes can abort when a DDL

statement times out waiting for another process to finish applying DML to the same table. There are two

ways to avoid this issue:

» Use coordinated Replicat. Coordinated Replicat is a multithreaded process that applies transactions in

parallel instead of serially. Each thread handles all of the filtering, mapping, conversion, SQL

construction, and error handling for its assigned workload. A coordinator thread coordinates transactions

across threads to account for dependencies, and also ensures that DDL is applied in a synchronized

fashion preventing DML from occurring on the same object at the same time. For more information

about coordinated Replicat, refer to Administrating Oracle GoldenGate for Windows and UNIX at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-

A54FC7446E67.htm#GWUAD953

» Oracle recommends that you avoid using the @RANGE function to divide a table among Replicat

processes if DDL is also replicated for the table. It is not possible to predict if all DML is completed

before the DDL is applied. To help alleviate the DDL timeout issue, use the DDL EXCLUDE or

INCLUDE parameters to instruct the Replicat process to which tables DDL can be applied.

For more details about replicating DDL statements, refer to the Installing and Configuring Oracle GoldenGate

for Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-

C9431E1FF034.htm#GIORA285

For information about automating the workload division between multiple Replicat processes, refer to MOS

Note 2224542.1 at

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

If Replicat is doing a lot of data transformations, consider moving the transformations to the Data Pump

process.

The following example shows SPADV output that shows the ANR process as the bottleneck.

PATH 2 RUN_ID 38 RUN_TIME 2016-DEC-12 15:43:23 CCA Y

|<PR> "replicat"=> 0% 0% 100% "CPU + Wait for CPU" |<Q>

"SOESMALL"."OGGQ$REP_1A" 148384 0.01 217 |<A> OGG$REP_1A 145696 29 -1 APR 6.7%

0% 93.3% "CPU + Wait for CPU" APC 100% 0% 0% "" APS (11) 886.7% 0% 213.3% "CPU

+ Wait for CPU" | "replicat"=> 3873 9 100.% "CPU + Wait for CPU"

The top output also shows the ANR process as the highest CPU consumer.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 25038 oracle 20 0 38.9g 1.6g 1.6g S 92.6 0.7 8:38.34 oracleTEST11

(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

 25070 oracle 20 0 38.9g 1.5g 1.5g R 69.0 0.6 7:08.56 ora_as01_TEST11

 25030 oracle 20 0 504m 46m 21m S 65.5 0.0 6:24.45

/u01/oracle/goldengate/ga122_11g/replicat PARAMFILE /u01/oracle/golde

 25074 oracle 20 0 38.9g 1.7g 1.7g S 21.5 0.7 1:49.42 ora_as03_TEST11

 25072 oracle 20 0 38.9g 1.7g 1.7g S 21.0 0.7 2:00.73 ora_as02_TEST11

http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm%23GWUAD953
http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm%23GWUAD953
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-C9431E1FF034.htm%23GIORA285
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-C9431E1FF034.htm%23GIORA285
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

22 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

The ANR process can be identified using the following query.

SQL> SELECT DST_QUEUE_SCHEMA, DST_QUEUE_NAME, TOTAL_MSGS, SPID, STATE

 from V$PROPOGATION_RECEIVER;

DST_QUEUE_SCHEMA DST_QUEUE_NAME TOTAL_MSGS SPID

---------------- -------------- ---------- --------

SOE OGGQ$REP_1A 90848 25038

b. If there are I/O wait times on the Oracle GoldenGate trail file location, move the trail files to a higher performing

file system.

This problem also appears in Data Pump performance. If multiple Replicat processes are configured to read the

same trail files, consider using additional Data Pump processes so that fewer Replicat processes are reading

from the same files concurrently. For an example, refer to item in the preceding section 2d (If latency is

reported for an Extract process).

c. If there are no bottlenecks for the Replicat or ANR processes (not constrained by CPU or trail file I/O), but lag is

being reported for the Replicat process by GoldenGate, it is likely due to one of the integrated apply processes.

Use SPADV to identify which process is closest to 100% CPU, and then use the following to guide you in

resolving it.

i. Apply Reader (APR) process.

The apply reader process is responsible for accumulating the changes into transactions, computing

dependencies between them, and then passing them to the apply coordinator.

Here is an example SPADV output showing the apply reader bottlenecked by CPU.

PATH 1 RUN_ID 37 RUN_TIME 2017-JAN-17 15:40:41 CCA Y

|<PR> "replicat"=> 13.3% 0% 86.7% "CPU + Wait for CPU" |<Q>

"SOESMALL"."OGGQ$REP_1A" 180238 0.01 2437 |<A> OGG$REP_1A 185704 37

4032936 APR 0% 0% 100% "CPU + Wait for CPU" APC 100% 0% 0% "" APS (6)

373.3% 0% 226.7% "CPU + Wait for CPU" | OGG$REP_1A APR 3326 7 100.%

"CPU + Wait for CPU"

Linux top output also shows the apply reader is the top CPU consumer.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 54761 oracle 20 0 18.1g 406m 376m R 99.4 0.4 7:41.58 ora_as01_GGA1

 54770 oracle 20 0 18.1g 5.5g 5.5g R 92.3 5.8 4:36.99 ora_as05_GGA1

 55314 oracle 20 0 18.1g 6.1g 6.1g S 91.5 6.5 5:49.73 ora_as06_GGA1

 54767 oracle 20 0 18.1g 5.5g 5.5g R 91.2 5.8 4:55.66 ora_as04_GGA1

 54765 oracle 20 0 18.1g 5.3g 5.3g S 80.8 5.6 4:26.92 ora_as03_GGA1

 54684 oracle 20 0 320m 73m 25m R 54.3 0.1 4:06.57

/u01/oracle/goldengate/replicat PARAMFILE /u01/oracle/golden

When the apply reader is bottlenecked on CPU, there are three possible solutions:

» Reduce the number of foreign key or primary key constraints to reduce the key dependency computations.

» Increase the source transaction sizes to reduce the overhead of transaction dependency tracking.

» Create multiple integrated Replicat processes and manually partition groups of dependent objects between

them. Refer to MOS Note 2224542.1 at

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

23 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

ii. Apply Coordinator (APC) process

The apply coordinator process is responsible for batching transactions together and scheduling them with the

apply server processes. It is less common to see the apply coordinator as the bottlenecked process, but it

can be caused by using a BATCHSQL BATCHTRANSOPS value that is too high. If the apply coordinator is

constrained by CPU, try reducing the BATCHTRANSOPS size or create multiple integrated Replicat

processes and manually partition groups of dependent objects between them. Refer to MOS Note 2224542.1

at

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

The following is an example of SPADV output.

PATH 2 RUN_ID 71 RUN_TIME 2014-JUL-24 11:26:18 CCA Y

|<R> REP_1A 51062 7371910 0 6.7% 80% 13.3% "" |<Q> "SOESMALL"."OGGQ$REP_1A"

50801 0.01 5001 |<A> OGG$REP_1A 43127 8304 3003835 APR 0% 46.7% 53.3% "CPU +

Wait for CPU" APC 0% 0% 100% "CPU + Wait for CPU" APS (8) 573.3% 0% 220% "CPU

+ Wait for CPU" | OGG$REP_1A APC 786 26382 100.% "CPU + Wait for CPU"

iii. Apply Server (APS) processes

The apply server processes are responsible for applying the DML to the database. If constrained by CPU

and if the SQL Statistics AWR report shows small numbers of rows per execution, enable Replicat

BATCHSQL or increase the size of BATCHTRANSOPS.

The following is an example of SPADV output when APS is CPU bound.

PATH 2 RUN_ID 68 RUN_TIME 2014-JUL-28 13:25:55 CCA Y

|<R> REP_1A 148538 20965388 0 0% 13.3% 73.3% "CPU + Wait for CPU" |<Q>

"SOESMALL"."OGGQ$REP_1A" 148318 0.01 4289 |<A> OGG$REP_1A 141917 15280 -1 APR

0% 0% 100% "CPU + Wait for CPU" APC 66.7% 0% 33.3% "CPU + Wait for CPU" APS

(13) 400% 0% 880% "CPU + Wait for CPU" | OGG$REP_1A APS 1497 21494 100.%

"CPU + Wait for CPU"

The following AWR report shows a small number of rows per DML statement because BATCHSQL is not

enabled.

When BATCHSQL is enabled, the rows per execution increases and the elapsed time decreases, as shown in

the following report.

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

24 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

It is possible that the apply server processes are contending for database resources, much in the same way

a user process does. For example, for I/O, data block accesses, or index block updates. In such scenarios,

SPADV or AWR indicate this.

The following example shows SPADV output.

PATH 2 RUN_ID 53 RUN_TIME 2014-JUL-30 13:13:24 CCA Y

|<R> REP_1A 51492 7242294 0 0% 86.7% 13.3% "" |<Q> "SOESMALL"."OGGQ$REP_1A"

51398 0.01 5001 |<A> OGG$REP_1A 46399 5193 -1 APR 0% 53.3% 46.7% "CPU + Wait

for CPU" APC 93.3% 0% 6.7% "" APS (11) 26.7% 0% 673.4% "cell single block

physical read" | OGG$REP_1A APS 1440 14146 66.7% "cell single block

physical read"

The following report shows AWR background process wait events:

Note that the apply server processes are considered background processes, and so they are included in the

background wait events section of the AWR report.

The following AWR report shows that the SQL being applied by Oracle GoldenGate has the highest I/O wait

times.

In such cases, evaluate database or object tuning techniques to improve performance. Refer to Oracle

Database Performance Tuning Guide at

http://docs.oracle.com/database/121/TGDBA/toc.htm

There are cases when the cause for slowness among the apply server processes is large batch operations

against a set of tables that differs from normal OLTP operations, such as large history or reporting tables.

Distributing these objects into a separate Replicat process can significantly increase the apply performance.

The following example SPADV output shows one apply server process (APS) consuming large amounts of

CPU while the others are idle. With integrated Replicat the apply server processes must wait for the large

transaction to be applied before the OLTP transactions can continue. There is only one APS process at

100% CPU and nine of them idle (900%).

PATH 2 RUN_ID 63 RUN_TIME 2017-JAN-17 20:58:19 CCA Y

|<R> REP_1A 26475 8091556 0 0% 0% 100% "CPU + Wait for CPU" |<Q>

"SOESMALL"."OGGQ$REP_1A" 26326 0.01 4931 |<A> OGG$REP_1A 115113 0.01 1208876

APR 26.7% 0% 73.3% "CPU + Wait for CPU" APC 100% 0% 0% "" APS (10) 900% 0%

100% "CPU + Wait for CPU" | OGG$REP_1A APS 1504 3542 100.% "CPU + Wait for

CPU”

http://docs.oracle.com/database/121/TGDBA/toc.htm

25 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Linux top output also shows one apply server process consuming much larger amounts of CPU than the

other processes.

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

88004 oracle 20 0 18.1g 9.5g 9.5g R 92.9 10.1 4:11.70 ora_as09_GGA1

85438 oracle 20 0 331m 75m 25m R 82.0 0.1 11:41.74

/u01/oracle/goldengate/HungFix1/replicat PARAMFILE /u01/oracle/golde

85444 oracle 20 0 18.1g 4.1g 4.1g R 79.4 4.4 11:31.97 oracleGGA1

(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

85500 oracle 20 0 18.4g 4.2g 4.0g R 73.1 4.5 11:37.00 ora_as01_GGA1

86892 oracle 20 0 18.1g 6.1g 6.1g R 32.8 6.5 4:50.19 ora_as08_GGA1

85504 oracle 20 0 18.1g 6.7g 6.7g R 32.2 7.2 7:01.56 ora_as03_GGA1

Dividing the work between two integrated Replicat processes shows a 31% performance increase.

NOTE: When using multiple integrated Replicat processes with Oracle GoldenGate Release 12.1.2.0, be sure to

apply Oracle GoldenGate performance patch 19261665 to enable faster reading through the trail files containing

uninterested transaction data.

26 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Conclusion

Key configuration recommendations were presented for the source and target databases, along with the Oracle

GoldenGate Extract, Data Pump, and Replicat processes.

To optimize an Oracle GoldenGate environment, the following crucial pieces of data must be gathered:

» Oracle GoldenGate process lag information

» Report files and error logs

» Active Workload Repository (AWR) and Active Session History (ASH)

» CPU data

» I/O data

» Oracle Streams Performance Advisor (SPADV) for integrated Extract and integrated Replicat

» Integrated Extract and integrated Replicat healthcheck

With all of this information gathered, the presented tuning methodology can be followed to identify and resolve the

current cause of lag or latency.

Performance tuning is an iterative process, such that when the cause of lag is resolved, the process begins again

with data gathering and analysis.

Using this approach, the previously described performance tuning exercise with a Swingbench OLTP workload

demonstrated how Oracle GoldenGate Extract to Replicat performance could be increased by a factor of 20 times.

Replicat apply rate of the source redo increased from 3.8MB/second to 78.1MB/second using an integrated Extract

and integrated Replicat configuration.

27 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Appendix A – Oracle GoldenGate Performance Information Gathering

To troubleshoot Oracle GoldenGate performance there are several key pieces of information that must be gathered

and analyzed. The following information should always be gathered covering the same point in time and on all

servers running Oracle GoldenGate processes that are part of the same replication data flow.

Oracle GoldenGate Latency

Latency or lag is the period of time that has passed between when a change (DML or DDL) occurred in the source

database and the current point in time. For example, Extract latency is the time that has elapsed since the change

occurred to the source table and the time it was extracted and written to the trail file. Conversely, Replicat latency is

the time that has elapsed from the source table change to the time it was applied to the target database.

The amount of acceptable lag time is dependent on an agreed upon Service Level Agreement (SLA) that states how

much time is allowed to pass between when the data was entered in the source database to the time it appears on

the target database. A lag time of 30+ minutes may be acceptable for offloading data for ad-hoc queries but not for a

banking application that often requires near zero latency.

When using integrated Extract or integrated Replicat, the latency can be determined by querying the database or by

using the GoldenGate GGSCI utility.

Determining Latency for Integrated Extract

» Using a database query:

SQL> SELECT capture_name, 86400 *(available_message_create_time -

capture_message_create_time) latency_in_seconds FROM GV$GOLDENGATE_CAPTURE;

» Using GGSCI:

GGSCI> lag extract <extract_name>

Determining Latency for Integrated Replicat

» Using a database query:

SQL> SELECT r.apply_name, 86400 *(r.dequeue_time - c.lwm_message_create_time)

latency_in_seconds FROM GV$GG_APPLY_READER r, GV$GG_APPLY_COORDINATOR c WHERE

r.apply# = c.apply# and r.apply_name = c.apply_name;

» Using GGSCI:

GGSCI> lag replicat <replicat_name>

Lag is also reported by the Oracle GoldenGate manager process for both integrated and non-integrated Extract and

Replicat. Specify the following GoldenGate manager parameters in the manager parameter file located at

$GG_install_dir/dirprm/mgr.prm.

LAGREPORTMINUTES 5 -- Interval at which lag is checked

LAGINFOMINUTES 5 -- Threshold at which lag is reported

LAGCRITICALMINUTES 15 -- Critical threshold reporting value

The values for these parameters depend on your acceptable lag time.

Latency is written to the ggserr.log file that is automatically created in the Oracle GoldenGate installation

directory (in hours:minutes:seconds format). For example:

Manager for Oracle, mgr.prm: Lag for REPLICAT REP_1A is 00:00:06 (checkpoint

updated 00:00:01 ago).

28 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

2011-09-30 23:48:38 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,

mgr.prm: Lag for REPLICAT REP_1B is 00:06:37 (checkpoint updated 00:00:00 ago).

2011-09-30 23:48:38 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,

mgr.prm: Lag for REPLICAT REP_1C is 00:05:23 (checkpoint updated 00:00:04 ago).

If the latency is higher than what is acceptable, gather the recommended data listed in this section and follow the

performance tuning methodology described below to determine and resolve the performance bottleneck.

Oracle GoldenGate Report Files and Error Logs

Each Extract, Data Pump, and Replicat process generates an ongoing report file with the following information:

» Parameters in use

» Table and column mapping

» Runtime messages and errors

» Runtime statistics

To monitor Oracle GoldenGate performance, set the REPORTCOUNT parameter in the GoldenGate process

parameter file to report real-time statistics.

REPORTCOUNT EVERY 15 MINUTES, RATE

This parameter should be set for all Extract, Data Pump, and Replicat processes to a suitable interval rate

(recommended maximum value of 15 MINUTES). The report file contains entries to show the current processing

rates. For example:

 13688414 records processed as of 2014-07-28 22:17:17 (rate 114065, delta 132143)

141743251 records processed as of 2014-07-28 22:32:19 (rate 131239, delta 129957)

The Oracle GoldenGate process report files are located in the $GG_install_dir/dirrpt directory.

This example shows that a Replicat process applied 132,143 and 129,957 records in the two sample intervals,

which are fifteen minutes apart.

Both the processing rates and the lag should be continually monitored for sudden changes to Oracle GoldenGate

performance levels.

Automatic Workload Repository and Active Session History

Automatic Workload Repository (AWR) is a good starting point for identifying general database performance issues

which can provide initial indicators to help locate problems with Extract or Replicat processes. Using AWR, you can

easily determine if the bottlenecks are inside or outside of the database.

After analyzing the relevant AWR reports, use Active Session History (ASH) to look at more detailed information on

particular sessions in the database, like those of a Replicat process. Each Replicat and Extract process is given a

unique SQL module ID that can be used for identification in AWR and ASH reports.

For example:

29 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

The Replicat names in this example are REP_1F2 and REP_1A.

An ASH report can be created for a specific Replicat process by running the

$ORACLE_HOME/rdbms/admin/ashrpti.sql script and using the SQL module name. Use the generated

report to further investigate why a particular Replicat process is not performing as expected.

CPU Data

Gathering CPU data with operating system tools like top is essential to see if Oracle GoldenGate processes are

bottlenecked on CPU rather than I/O or some other database process. As a general rule, if the Replicat process is

not on CPU for at least 40% of the time, then it is constrained by something else such as I/O or database processing

of the replicated SQL statements. It is important to gather CPU data that shows each thread of execution within a

process. For example, an Extract process uses multiple threads, and it is important to be able to identify each thread

instead of the entire process consuming CPU.

The following example shows the result of using top without any thread-specific parameters.

top - 12:51:02 up 182 days, 20:51, 3 users, load average: 0.09, 0.14, 0.09

Cpu(s): 5.7%us, 0.9%sy, 0.0%ni, 93.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 99060552k total, 42003164k used, 57057388k free, 1219612k buffers

Swap: 25165816k total, 0k used, 25165816k free, 8591940k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 76001 oracle 20 0 739m 68m 32m R 117.7 0.1 15:06.70

/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext_1a.prm

The Extract process in the above example is using 117.7% CPU, so it is not possible to verify if one of the process

threads is bottlenecked on CPU. Instead, use top parameters to show process threads (top –H for Linux) as

shown below.

top - 12:51:45 up 182 days, 20:51, 3 users, load average: 0.19, 0.16, 0.10

Cpu(s): 6.5%us, 1.2%sy, 0.0%ni, 92.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 99060552k total, 42148560k used, 56911992k free, 1219612k buffers

Swap: 25165816k total, 0k used, 25165816k free, 8583880k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 76001 oracle 20 0 739m 68m 32m R 81.8 0.1 8:32.61

/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext_1a.prm

 76016 oracle 20 0 739m 68m 32m R 48.8 0.1 5:03.39

/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext_1a.prm

I/O Data

Gathering I/O data using operating system tools such as iostat or OSWatcher is crucial to understanding where

the bottlenecks on I/O originate. For the source environment, you need to consider both reads from the redo log files

30 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

and concurrent reads and writes to and from the trail files by Extract and Data Pump processes. On the target

environment, the concurrent access to the trail files by Data Pump and one or more Replicat processes must be

monitored. As with normal database tuning, the database I/O should be monitored, and these results can be used

along with AWR and ASH to identify and resolve bottlenecks.

For information about OSWatcher, refer to the OSWatcher Analyzer User’s Guide at

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=461053.1&h=Y

Oracle Streams Performance Advisor (Integrated Extract and Integrated Replicat)

The Oracle Streams Performance Advisor (SPADV) enables monitoring of the integrated GoldenGate server

processes which are used by integrated Extract and integrated Replicat, and provides information about how these

processes are performing.

SPADV statistics are collected and analyzed using the UTL_SPADV package.

To install SPADV:

1. Grant the following privileges to a designated Oracle GoldenGate administrator database user if it hasn’t been

done already.

SQL> exec DBMS_GOLDENGATE_AUTH.GRANT_ADMIN_PRIVILEGE('<db user name>');

2. Connect to the database with the user name that was granted permissions in Step 1.

3. Run the utlspadv.sql script. For example:

SQL> @$ORACLE_HOME/rdbms/admin/utlspadv.sql

Oracle recommends that you gather statistics for a 30-60 minute time period during which you are troubleshooting

performance. It is also recommended that you gather statistics during a 30-60 minute time period where

performance is good, to serve as a baseline comparison.

To gather statistics every 15 seconds, run the following SQL*Plus command as the Oracle GoldenGate

administrator.

SQL> exec UTL_SPADV.START_MONITORING(interval=>15);

To stop statistics gathering, run the following command.

SQL> exec UTL_SPADV.STOP_MONITORING;

Run the following commands to determine if the monitoring job is currently running.

SET SERVEROUTPUT ON

DECLARE

 is_mon BOOLEAN;

BEGIN

 is_mon := UTL_SPADV.IS_MONITORING(

 job_name => 'STREAMS$_MONITORING_JOB',

 client_name => NULL);

 IF is_mon=TRUE THEN

 DBMS_OUTPUT.PUT_LINE('The monitoring job is running.');

 ELSE

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=461053.1&h=Y

31 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

 DBMS_OUTPUT.PUT_LINE('No monitoring job was found.');

 END IF;

END;

/

To create a text report of SPADV statistics after monitoring for a period of time, from SQL*Plus as the Oracle

GoldenGate administrator, run the following:

spool /tmp/spadv.txt

begin

 utl_spadv.show_stats(path_stat_table=>'STREAMS$_PA_SHOW_PATH_STAT',

 bgn_run_id=> 1,

 end_run_id=> 9999,

 show_legend=> TRUE);

end;

After the reports have been generated, Oracle recommends purging the SPADV statistics using the following

command:

SQL> exec UTL_SPADV.STOP_MONITORING(PURGE=>TRUE);

Appendix C contains a shell script example that displays SPADV statistics in real time so that you can monitor the

GoldenGate processes during the monitoring period.

The following example shows the output for integrated Extract.

PATH 2 RUN_ID 59 RUN_TIME 2013-MAR-21 15:20:34 CCA Y

|<C> OGG$CAP_EXT_1A 129882 129851 57 LMR 0% 73.3% 26.7% "CPU + Wait for CPU"

LMP (1) 0% 0% 100% "CPU + Wait for CPU" LMB 80% 0% 20% "CPU + Wait for CPU" CAP

46.7% 0% 53.3% "CPU + Wait for CPU" |<Q> "STREAMSADMIN"."OGG$Q_EXT_1A" 129844

0.01 0 |<A> OGG$EXT_1A 0.01 0.01 0 | NO BOTTLENECK IDENTIFIED

The general format for each process is:

<process name> <idle %> <flow control %> <top event %> <top event name>

The preceding integrated Extract example shows the following statistics:

» LogMiner captured an average of 128,882 messages per second.

» The LogMiner latency is currently 57 seconds.

» The LogMiner reader (LMR) server process spent:

» 0% of its time idle

» 73.3% of its time in flow control (waiting for the next process in the chain (LMP))

» 26.7% of its time consuming or waiting for CPU

» The LogMiner preparer (LMP) server process spent:

» 0% of its time idle

» 0% of its time in flow control

» 100% of its time consuming or waiting for CPU

» The LogMiner builder (LMB) server process spent:

» 80% of its time idle

» 0% of its time in flow control

32 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

» 20% of its time consuming or waiting for CPU

» The capture process (CAP) session spent:

» 46.7% of its time idle

» 0% of its time in flow control

» 53.3% of its time consuming or waiting for CPU

The SPADV statistics clearly indicate if any of the LogMiner server processes are causing performance bottlenecks.

In the next example, the LogMiner preparer (LMP) process is bottlenecked on CPU.

The output from SPADV for integrated Replicat has a similar format to integrated Extract. The following example

shows the output for integrated Replicat (excerpt using an Oracle Database 12c database).

PATH 2 RUN_ID 69 RUN_TIME 2014-JUL-15 08:34:57 CCA Y

|<R> REP_1A 111937 15724041 0 0% 31.3% 50% "CPU + Wait for CPU" |<Q>

"SOESMALL"."OGGQ$REP_1A" 111636 0.01 4870 |<A> OGG$REP_1A 114395 11729 -1 APR 0%

12.5% 87.5% "CPU + Wait for CPU" APC 56.3% 0% 43.8% "CPU + Wait for CPU" APS

(12) 237.5% 0% 931.3% "CPU + Wait for CPU" | OGG$REP_1A APS 1374 47804 100.%

"CPU + Wait for CPU"

The output shows the following statistics:

» The apply rate at this sample time is 114,395 messages per second by the apply process, OGG$REP_1A.

» The apply latency is shown as -1 which indicates, as does zero, that there is no latency.

» The Replicat process spent:

» 0% of its time idle

» 31.3% of its time in flow control (waiting for another process further along in the chain)

» 50% of its time consuming or waiting for CPU

» The apply reader (APR) process spent:

» 0% of its time idle

» 12.5% of its time in flow control (waiting on another process further along in the chain)

» 87.5% of its time consuming or waiting for CPU

» The apply coordinator (APC) process spent:

» 56.3% of its time idle

» 0% of its time in flow control

» 43.8% of its time consuming or waiting for CPU

» The apply server (APS) processes spent:

» 237.5% of its time idle

» 0% of its time in flow control

» 931.3% of its time consuming or waiting for CPU

» There are twelve APS processes; therefore, 931.1% of twelve processes equates to 77.6% of total time.

» A single APS process is identified as the bottleneck with 100% CPU consumption or time spent waiting for CPU.

The integrated Replicat SPADV clearly shows there is a bottleneck on apply server processes on CPU. To learn

how to resolve such bottlenecks see the methodology described in “Oracle GoldenGate Performance Tuning

Methodology” on page 17.

33 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Integrated Capture and Integrated Replicat Healthcheck

The integrated capture and integrated Replicat healthcheck is a report that shows the current status of an Oracle

GoldenGate integrated capture or integrated Replicat configuration. The report is divided into three main sections.

» Configuration - reports definitions relevant for Oracle GoldenGate integrated Extract and integrated Replicat.

» Analysis - provides output for the checks done by the healthcheck.

» Statistics - reports statistics for those elements of integrated capture and integrated Replicat that are enabled.

Healthcheck is a statically generated report, so it only reflects the status at one point in time. Oracle recommends

gathering two or three healthcheck reports at several minute intervals to make sure that the components are flowing

correctly.

For instructions about downloading and for more information about using the healthcheck script, refer to MOS Note

1448324.1 at

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1448324.1&h=Y

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1448324.1&h=Y

34 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Appendix B – Considerations for Non-Integrated GoldenGate Replicat Processes

If you are not using Oracle GoldenGate integrated Replicat there are some additional considerations that must be

understood.

Use of BATCHSQL

By default, non-integrated Replicat operates in normal mode, where each row change is made one row at a time.

Commits are issued based on the setting of the GROUPTRANSOPS parameter (which defaults to 1000). After

approximately 1000 SQL operations, a COMMIT command is issued. Replicat accumulates operations from source

transactions, in transaction order, and applies them as a group within one transaction on the target database. The

GROUPTRANSOPS parameter sets a minimum value rather than an absolute value to avoid dividing source

transactions. Replicat waits until it receives all operations from the last source transaction in the group before

applying the target transaction.

By enabling BATCHSQL mode, Replicat batches together SQL statements that affect the same table, operation type

(INSERT, UPDATE or DELETE), and column list and applies them together as an array operation. By using array

operations, apply rates generally increase because there is significantly less CPU utilization per row.

The following is an example of an insert-only workload with Replicat in normal mode (taken from an AWR report).

You can see that single row operations are carried out because the value of the Rows per Exec column is 1.00.

In contrast, the following example uses the BATCHSQL parameter with a default OPSPERBATCH value of 1200.

The value of the Rows per Exec column has increased to approximately 1000 and there is a 4.8 times reduction in

elapsed time and CPU time for these inserts.

In most cases, Oracle recommends that you leave the setting of the OPSPERBATCH parameter at the default value

of 1000. To enable BATCHSQL for a Replicat, add the BATCHSQL parameter to the Replicat parameter file.

When BATCHSQL is enabled for a non-integrated Replicat, Oracle recommends regularly checking the process

report file and statistics to make sure that few transactions are reverting back to normal mode (non-batched)

because an exception was encountered. When many exceptions occur, apply performance can suffer because of

the rolling back of the batched transaction and reapplying it in normal mode. To determine how many batched

transactions are being aborted, use the following GGSCI command:

GGSCI> send <replicat_name> report;

Then, look at the latest information in the Replicat report file located in the dirrpt directory. For example:

35 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

BATCHSQL statistics:

 Batch operations: 21322428

 Batches: 21294

 Batches executed: 21294

 Queues: 21294

 Batches in error: 8

 Normal mode operations: 8397

 Immediate flush operations: 0

 PK collisions: 14381

 UK collisions: 0

 FK collisions: 0

In the preceding example, there are 8 transaction batches that encountered an exception, with 14381 primary key

collisions.

The following example Replicat report file shows the reason for the exceptions.

2014-07-15 11:46:14 WARNING OGG-00869 Aborting BATCHSQL transaction. Database

error 60 (OCI Error ORA-00060: deadlock detected while waiting for resource

(status = 60), SQL <UPDATE "SOESMALL"."INVENTORIES" x SET x."QUANTITY_ON_HAND" =

:a2 WHERE x."PRODUCT_ID" = :b0 AND x."WAREHOUSE_ID" = :b1>).

2014-07-15 11:46:14 WARNING OGG-01137 BATCHSQL suspended, continuing in normal

mode.

2014-07-15 11:46:14 WARNING OGG-01003 Repositioning to rba 297226345 in seqno 1.

2014-07-15 11:46:14 INFO OGG-01139 BATCHSQL resumed, recovered from error.

When these exceptions occur they should be investigated and resolved before changing the BATCHSQL

configuration.

When using the BATCHSQL or GROUPTRANSOPS parameters, SQL operations from different transactions are

merged into larger transactions while maintaining transactional order. If the target transactions must match the

source transactions (for example, the number of DMLs per commit), then set GROUPTRANSOPS=1, which may limit

the Replicat performance for small transactions.

The maximum size of each statement batch is controlled by the BATCHSQL OPSPERBATCH parameter. The default

size of 1000 is adequate in most cases, but changing the batch size may result in performance gains. Setting the

batch size too low or too high can result in performance degradation. When changing the BATCHSQL parameter do

so in a controlled manner, so performance with the old and new settings can be accurately compared.

Dividing Workload Between Multiple Replicats

If you are using non-integrated Replicat, it is recommended that you use the Coordinated Replicat feature to divide

work amongst Replicat processes. Coordinated Replicat was introduced with Oracle GoldenGate 12.1.2 release,

providing an easier way to manually partition the workload to apply high volume transactions concurrently. Instead of

creating multiple Replicat processes, each with their own parameter file, listing which objects to apply using RANGE

parameter, a single parameter file is used to create a number of coordinated Replicats. A coordinator thread process

coordinates transactions across Replicats that require coordination, such as DDL and primary key updates with

THREADRANGE partitioning. Such a transaction is executed as one transaction in the target with full synchronization;

it waits until all prior transactions are applied, and all transactions after this barrier transaction must wait until this

barrier transaction is applied.

It is recommended that you use Coordinated Replicat when there are a few tables that are modified with large

transactions such that applying the transactions is causing Replicat slowness.

36 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

For more information about Coordinated Replicat refer to Administering Oracle GoldenGate for Windows and UNIX

at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-

A54FC7446E67.htm#GWUAD953

Before configuring multiple integrated or non-integrated Replicat processes, it is important to identify the key

characteristics of the data being replicated.

1. Heavily accessed tables (with DML)

When a single Replicat process cannot keep apply latency low enough, Oracle recommends that you evenly

distribute the data being applied across a number of Replicat processes until the latency is near zero or within an

acceptable time. To do this, you must identify the heavily manipulated tables. There are three methods available

to identify such tables:

a. Normally done during the Oracle GoldenGate testing phase before implementation in a production

environment, configure Extract to capture the schema or tables required for replication with the

TESTMAPPINGSPEED parameter. This parameter stops Extract from creating any trail files, but allows you to

see the type and volume of data captured, test the Extract configuration, and determine the overhead cost of

mining the log files on the source database. After Extract has run long enough to capture a suitable amount of

workload, stop Extract to create an Extract report. The report file is created in the dirrpt directory of the

Oracle GoldenGate installation home. The report includes a list of tables with the number of inserts, updates,

and deletes carried out against each table. For example:

 From Table PSFT.PS_PAY_LINE:
 # inserts: 750720

 # updates: 1501440

 # deletes: 0

 # discards: 0

From Table PSFT.PS_PAY_EARNINGS:

 # inserts: 2352256

 # updates: 4204032

 # deletes: 250240

 # discards: 0

From Table PSFT.PS_PAY_OTH_EARNS:

 # inserts: 1901824

 # updates: 1651584

 # deletes: 250240

 # discards: 0

b. Use the Oracle GoldenGate STATS EXTRACT command to gather table statistics for a currently running

Extract process. While Extract is running, use the following script to retrieve table statistics for the latest 15

minute period:

#!/bin/bash

cd <Oracle GoldenGate Install Home>

./ggsci <<!EOT > /tmp/table_stats.out

 stats extract ext_1a, reset

 pause 900

 stats extract ext_1a, total, latest

!EOT

http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm#GWUAD953
http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm#GWUAD953

37 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

The output produced includes table statistics since Extract was started and also since reset was issued 15

minutes before printing the statistics. For example:

Start of Statistics at 2013-02-18 15:41:29.

Output to /u01/goldengate/latest/dirdat_os/aa:

Extracting from SOESMALL.ORDERS to SOESMALL.ORDERS:

*** Total statistics since 2013-02-18 14:08:19 ***

 Total inserts 2411804.00

 Total updates 2411803.00

 Total deletes 0.00

 Total discards 0.00

 Total operations 4823607.00

*** Latest statistics since 2013-02-18 15:26:28 ***

 Total inserts 224076.00

 Total updates 224075.00

 Total deletes 0.00

 Total discards 0.00

 Total operations 448151.00

c. Use the Oracle GoldenGate logdump utility to retrieve the table statistics from one or more trail files. When

one or more trail files have been created, use the following commands to retrieve the table statistics:

% cd <Oracle GoldenGate Install Home>

% ./logdump

Logdump> count detail <trail_file directory>/<trail file name>

Use a wildcard character to retrieve the count from more than one file:

Logdump> count detail <trail_file_directory>/aa00000*

Example output:

SOESMALL.INVENTORIES Partition 4

Total Data Bytes 781788504

 Avg Bytes/Record 42

FieldComp 18614012

After Images 18614012

SOESMALL.ORDERS Partition 4

Total Data Bytes 1140800152

 Avg Bytes/Record 98

Insert 5790864

FieldComp 5790863

After Images 11581727

SOESMALL.ORDER_ITEMS Partition 4

Total Data Bytes 1439690630

 Avg Bytes/Record 70

Insert 20567009

After Images 20567009

For detailed information about using the logdump utility to determine table DML rates, refer to MOS Note

1301300.1 at

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1301300.1&h=Y

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1301300.1&h=Y

38 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Use the total number of DML statements for each table to divide the tables among the Replicat processes. This

can be made easier using the Perl code provided in MOS Note 2224542.1 at

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

The number of Replicat processes to configure is determined by using an iterative process of adding Replicat

processes until the latency reaches an acceptable number without causing I/O contention on reading the trail

files, or without causing other database performance issues. Start with a single Replicat process and measure

how it performs. If performance is not acceptable (after using BATCHSQL, if possible), distribute the tables

among two or three Replicat processes or coordinated Replicat threads and retest the performance. Continue

this exercise until a suitable performance level and latency time is reached.

If there are a small number of tables that contain a large percentage of DML which, after dividing into their own

Replicat processes, are still not applying the data fast enough, these tables can be further distributed among

coordinated Replicat threads.

For example, distributing a table between two coordinated Replicat threads would use the following MAP

parameter:

MAP SOESMALL.ORDER_ITEMS , TARGET soesmall.ORDER_ITEMS, THREADRANGE (1-2);

For more information about using the THREADRANGE parameter to distribute work to coordinated Replicat

threads, refer to Reference for Oracle GoldenGate for Windows and UNIX at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-C2356234-3780-48EE-9E7A-

F21DC352638C.htm#GUID-C2356234-3780-48EE-9E7A-F21DC352638C__BABIEAFI

2. Referential integrity between tables

To ensure data integrity, parent and child tables with referential integrity relationships should be processed by the

same Replicat process. For tables that are not part of referential integrity constraints (for example, Peoplesoft

Payroll tables), assigning tables among multiple Replicat processes becomes an easier task by evenly distributing

the load among each Replicat process.

3. Handling of DDL statements

To avoid locking conflicts between Replicat processes, it is very important to understand the nature of DDL

statements that occur against replicated objects. You must apply DDL with the same Replicat process that is

applying DML for the table. If not configured this way, the Replicat processes can abort when a DDL statement

times out waiting for another process to finish applying DML to the same table. There are two ways to avoid this

issue:

a. Use coordinated Replicat (for non-integrated Replicat only). Coordinated Replicat is a multithreaded process

that applies transactions in parallel instead of serially. Each thread handles all of the filtering, mapping,

conversion, SQL construction, and error handling for its assigned workload. A coordinator thread coordinates

transactions across threads to account for dependencies, and also ensures that DDL is applied in a

synchronized manner preventing DML from occurring on the same object at the same time. For more

information about coordinated Replicat, refer to Administrating Oracle GoldenGate for Windows and UNIX at

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-C2356234-3780-48EE-9E7A-F21DC352638C.htm%23GUID-C2356234-3780-48EE-9E7A-F21DC352638C__BABIEAFI
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-C2356234-3780-48EE-9E7A-F21DC352638C.htm%23GUID-C2356234-3780-48EE-9E7A-F21DC352638C__BABIEAFI

39 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-

A54FC7446E67.htm#GWUAD953

b. If you are not using coordinated Replicat, Oracle recommends that you avoid using the @RANGE function to

divide a table among Replicat processes if DDL is also applied to the table. It is not possible to predict if all of

the DML is completed before the DDL is applied. To help alleviate the DDL timeout issue, use the DDL

EXCLUDE or INCLUDE parameters to instruct the Replicat process to which tables DDL can be applied.

For more details about replicating DDL statements, refer to Installing and Configuring Oracle GoldenGate for

Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-

C9431E1FF034.htm#GIORA285

http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm%23GWUAD953
http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm%23GWUAD953
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-C9431E1FF034.htm%23GIORA285
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-C9431E1FF034.htm%23GIORA285

40 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES

Appendix C – Displaying Real-time SPADV Statistics

The following example shell script program displays the Oracle Streams Performance Advisor (SPADV) statistics in

real time, once monitoring has been started.

#!/bin/bash

Set the Oracle environment variables

export ORACLE_SID=GGS1

export ORACLE_HOME=/u01/app/oracle/product/12c

export PATH=$PATH:$ORACLE_HOME/bin

sqlplus -s <GG admin user>/<GG admin passwd> <<!EOS

set feedback off serveroutput on

-- First need to show first stat line with the legend:

begin

 utl_spadv.show_stats(path_stat_table=>'STREAMS\$_PA_SHOW_PATH_STAT',

 bgn_run_id=> -1,

 end_run_id=> -1,

 show_legend=> TRUE);

end;

/

!EOS

sleep 15

-- Now loop through showing results every 15 seconds, until CTRL-C is issued

d=0

while [$d -lt 1];

do

 date

 sqlplus -s streamsadmin/streamsadmin <<!EOS

 set feedback off serveroutput on

 begin

 utl_spadv.show_stats(path_stat_table=>'STREAMS\$_PA_SHOW_PATH_STAT',

 bgn_run_id=> -1,

 end_run_id=> -1,

 show_legend=> FALSE);

 end;

/

!EOS

 sleep 15

done

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2014, 2017, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and
the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0517

Oracle GoldenGate Performance
Best Practices

May 2017

Author: Stephan Haisley

