Oracle Maximum

Availability Architecture

Oracle GoldenGate Performance Best Practices

ORACLE WHITE PAPER | MAY 2017



Table of Contents Table of Contents
2

Introduction 4
Oracle Software 5
Database Configuration 5
Configuring the Source Database 5
Configuring the Target Database 8

Oracle GoldenGate Configuration 9
Extract Configuration 9

Data Pump Configuration 9
Replicat Configuration 13
Configure the GoldenGate Heartbeat Table 14
Database File System (DBFS) Configuration 16
Data Gathering for Oracle GoldenGate Performance 16
Oracle GoldenGate Performance Tuning Methodology 17
Conclusion 26
Appendix A — Oracle GoldenGate Performance Information Gathering 27
Oracle GoldenGate Latency 27
Determining Latency for Integrated Extract 27
Determining Latency for Integrated Replicat 27

Oracle GoldenGate Report Files and Error Logs 28
Automatic Workload Repository and Active Session History 28

CPU Data 29

2 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



1/0 Data 29

Oracle Streams Performance Advisor (Integrated Extract and Integrated

Replicat) 30
Integrated Capture and Integrated Replicat Healthcheck 33
Appendix B — Considerations for Non-Integrated GoldenGate Replicat Processes 34
Use of BATCHSQL 34
Dividing Workload Between Multiple Replicats 35

Appendix C — Displaying Real-time SPADV Statistics 40

3 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



Introduction

The strategic integration of Oracle Exadata Database Machine and Oracle Maximum Availability
Architecture (MAA) best practices (Exadata MAA) provides the best and most comprehensive Oracle
Database availability solution. Oracle GoldenGate is a key component of MAA, providing a logical
replication solution for fast platform migration and a near zero downtime solution for application and
database upgrades. It complements the rest of Oracle’s MAA solution that tolerates failures and
enables online maintenance and rolling upgrade through Oracle Real Application Clusters (Oracle

RAC), Oracle Automatic Storage Management (Oracle ASM), and Oracle Active Data Guard.

This white paper describes best practices for configuring Oracle GoldenGate for the best performance,
simple manageability, and stability for Oracle databases. Non-Oracle databases are not covered in this

paper.

Refer to “Oracle GoldenGate with Oracle Real Application Clusters Configuration” MAA white paper at
the link below for the initial configuration of Oracle GoldenGate, including installation, Oracle Database
File System (DBFS) configuration for shared Oracle GoldenGate files, and Oracle Real Application

Clusters (Oracle RAC) services configuration.

http://www.oracle.com/technetwork/database/features/availability/maa-goldengate-rac-2007111.pdf

4 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://www.oracle.com/technetwork/database/features/availability/maa-goldengate-rac-2007111.pdf

Oracle Software

Use Oracle GoldenGate Release 12.2.0 or later to take advantage of increased functionality and enhanced
performance features.

Starting with Oracle GoldenGate Release 12.1.2, Replicat can operate in integrated mode for improved scalability
within Oracle target environments. The apply processing functionality within the Oracle database is leveraged to
automatically handle referential integrity and data description language (DDL) so that the operations are applied in
the correct order.

Extract can also be used in integrated capture mode with an Oracle database, introduced with Oracle GoldenGate
Release 11.2.1. Extract integrates with an Oracle database log mining server to receive change data from the
database in the form of logical change records (LCRs). Extract can be configured to capture from a local or
downstream mining database. Because integrated capture mode is fully integrated with the database, no additional
setup is required to work with Oracle RAC, Oracle ASM, Transparent Data Encryption (TDE), and data compression,
which greatly simplifies setup without sacrificing performance.

The latest release of Oracle GoldenGate can be downloaded from My Oracle Support, Patches and Updates.

It is recommended that you use at minimum Oracle Database 11g Release 2 (11.2.0.4) to take advantage of both
integrated Extract and integrated Replicat GoldenGate features. Refer to Latest GoldenGate/Database
(OGG/RDBMS) Patch recommendations (Doc ID 2193391.1).

Database Configuration

This section describes the configuration best practices for the source and target databases used in an Oracle
GoldenGate replicated environment. It is assumed that the Extract and Data Pump processes are both running on
the source environment, and one or more Replicat processes are running on the target database. In an active-active
bi-directional Oracle GoldenGate environment, or when the target database may be converted to a source database,
combine both target and source database configuration steps.

Configuring the Source Database
Do the following tasks/steps to configure the source database
1. Run the database in ARCHIVELOG mode.

Oracle GoldenGate Extract mines the Oracle redo for data that can be replicated. The database must be running
in ARCHIVELOG mode. When using Extract in integrated capture mode, the LogMiner server can seamlessly
mine redo from the log buffer, online, and archive log files.

2. Enable force logging mode.

In order to ensure that the required redo information is contained in the Oracle redo logs for segments being
replicated, it is important to override any NOLOGGING operations which would prevent the required redo
information from being generated. If you are replicating the entire database, enable database force logging mode.

Check the existing force logging status by executing the following command:

5 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



SQL> SELECT FORCE LOGGING MODE FROM VSDATABASE;

If the database is currently not in force logging mode, enable force logging by executing the following commands:

SQL> ALTER DATABASE FORCE LOGGING;
SQL> ALTER SYSTEM SWITCH LOGFILE;

There are cases when you do not want to replicate some application data that are loaded with NOLOGGING
operations. In those cases, isolate the tables and indexes into separate tablespaces, then enable and disable
logging according to your requirements. You must first disable database force logging mode by executing the
following commands:

SQL> ALTER DATABASE NO FORCE LOGGING;

SQL> ALTER TABLESPACE <tablespaces replicated> FORCE LOGGING;
SQL> ALTER TABLESPACE <tablespaces not replicated> NOLOGGING;

It is important to test the effects of force logging mode on database performance before configuring Oracle
GoldenGate.

3. Enable supplemental logging.

Oracle GoldenGate requires minimal supplemental logging enabled at the database level along with additional
key column values to be logged into redo to allow the same updated or deleted rows manipulated on the source
database to be found on the target database.

1. Perform the following steps to verify and enable database minimal supplemental logging:

SQL> SELECT supplemental log data FROM v$database;
SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

SQL> SELECT supplemental log data FROM v$database;

2. Add supplemental logging at the schema level using the Oracle GoldenGate command ADD
SCHEMATRANDATA,

For more information about creating supplemental log groups, refer to Oracle GoldenGate Installing and
Configuring Oracle GoldenGate for Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-5DA7C3DC-5D87-4A8B-AD23-
6EF587A5CF41.htm#GWURF265

It is recommended to test and monitor any overheads added to the database by supplemental logging using a
production workload, before enabling supplemental logging in your production environment.

4. Configure the Streams pool.

When using Extract in integrated capture mode, an area of Oracle memory called the Streams pool must be
configured in the System Global Area (SGA) of the database.

6 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-5DA7C3DC-5D87-4A8B-AD23-6EF587A5CF41.htm%23GWURF265
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-5DA7C3DC-5D87-4A8B-AD23-6EF587A5CF41.htm%23GWURF265

The size requirement of the Streams pool for Extract in integrated capture mode is based on the number of
integrated Extracts and the integrated capture mode parameter, MAX SGA SIZE, which controls the amount of
shared memory used by the LogMiner server. The default value is 1GB which is adequate in almost all cases.
This is not the same as the database initialization parameter, SGA_ MAX SIZE.

Set the STREAMS POOL_SIZE initialization parameter for the database to the following value:

(MAX SGA SIZE * # of integrated Extracts) + 25% head room

For example, using the default values for the MAX SGA SIZE with two integrated Extracts:

(1GB * 2 ) * 1.25 = 2.50GB
STREAMS POOL SIZE = 2560M

5. Configure database parameters for redo log read performance.

Set the following database initialization parameters:

_log read buffers = 64
_log _read buffer size = 128

These two database initialization parameters can improve performance of reading the redo log files by the
LogMiner server by increasing the number and size of read buffers. These parameters also affect the same read
buffers that are used during database media recovery, of which the performance may also improve.

6. Install the UTL_SPADV package.

The UTL_SPADV PL/SQL package provides subprograms to collect and analyze statistics for the LogMiner server
processes. The statistics help identify any current areas of contention such as CPU or I/O. To install the
UTL_ SPADV package, as the Oracle GoldenGate administrator user on the source database, run the following
SQL script:

SQL> @SORACLE HOME/rdbms/admin/utlspadv.sql

Later in this white paper, there is an example using the UTL_SPADV package to monitor the LogMiner server
performance in real time. For more information about the UTL._ SPADV package, refer to Oracle Database
PL/SQL Packages and Types Reference at

http://docs.oracle.com/database/122/ARPLS/UTL _SPADV.htm#ARPLS883

For additional database configuration requirements, refer to Installing and Configuring Oracle GoldenGate for
Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-
6062CE7F532E.htm#GIORA121

7 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://docs.oracle.com/database/122/ARPLS/UTL_SPADV.htm%23ARPLS883
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-6062CE7F532E.htm%23GIORA121
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-6062CE7F532E.htm%23GIORA121

Configuring the Target Database

Do the following tasks/steps to configure the target database.
1. Run the database in ARCHIVELOG mode.

Although Oracle GoldenGate does not require that the target database run in ARCHIVELOG mode, Oracle
recommends doing so for high availability and recoverability. If the target database is configured to fail over or
switch over to a source database, ARCHIVELOG mode is required. The target database should also be involved
in a backup strategy to match the recovery options on the source database. In the event of a failure on the source
environment, and if an incomplete recovery is carried out, the target database also needs recovery to make sure
that the replicated objects are not from a point in time ahead of the source.

2. Enable force logging.

When replicating bi-directionally, or if the source and target database need to switch roles, force logging should
be enabled to prevent missing redo data required by Oracle GoldenGate Extract.

For instructions about how to enable force logging mode, refer to “Source Database” on page 5.

3. Configure the Streams pool.

When using integrated Replicat the Streams pool must be configured. If using non-integrated Replicat the
Streams pool is not necessary.

The size requirement of the Streams pool for integrated Replicat is based on a single parameter,

MAX_ SGA_SIZE. The MAX_ SGA_SIZE parameter defaults to INFINITE which allows the Replicat process to
use as much of the Streams pool as possible. Oracle does not recommend setting the MAX SGA SIZE
parameter.

Set the STREAMS POOL_SIZE initialization parameter for the database to the following value:

(1GB * # of integrated Replicats) + 25% head room

For example, on a system with one integrated Replicat process the calculation would be as follows:

(1GB * 1) * 1.25 = 1.25GB
STREAMS POOL_SIZE = 1280M

4. Configure the target SGA parameters.

The database parameters controlling the size of the shared memory components in the System Global Area
(SGA) must be configured similarly to the source database of the data being replicated. This ensures that no
unexpected drop in performance is seen due to incorrectly sized memory. For example, if the source database is
configured with an 11GB buffer cache, the same performance cannot be expected with the same workload using
a 2GB buffer cache.

If replicating a subset of the source database the target SGA may be sized smaller. If there is additional database
work carried out on the target database, such as increased reporting applications, the SGA should be increased
accordingly.

8 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



For additional database configuration requirements, refer to Installing and Configuring Oracle GoldenGate for
Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-
6062CE7F532E.htm#GIORA121

Oracle GoldenGate Configuration

This section describes the configuration best practices for Oracle GoldenGate components Extract, Data Pump, and
Replicat.

Extract Configuration

Oracle recommends using Oracle GoldenGate Release 12.2.0.1 or later with the integrated capture mode Extract to
take advantage of the integration with the LogMiner server. Integrated capture enables seamless extraction of more
data types than with classic mode Extract, such as compressed data (Basic, OLTP, and Exadata Hybrid Columnar
Compression). There is no additional configuration required for Extract to read log files stored on Oracle ASM.
RMAN’s fast recovery area policies ensure that archive logs cannot be removed until Extract no longer needs them.

When using integrated capture the default settings are appropriate for most environments. Be sure to set the
STREAMS POOL_SIZE initialization parameter correctly, as explained in “Database Configuration” on page 5. It is
also recommended that you set the integrated Extract parameter LOGMINER READ BUFFERS, which controls the
number of buffers (64KB each) used by LogMiner to read redo. These buffers are allocated from the streams pool
allotted to LogMiner and default to 64. It is recommended that you set the LOGMINER READ BUFFERS to a value
of 256.

TRANLOGOPTIONS INTEGRATEDPARAMS ( LOGMINER READ BUFFERS 256)

Data Pump Configuration

The primary function of the Data Pump is to read the trail files created by Extract and route data to the target host.
Use the PASSTHRU parameter in the Data Pump parameter file to increase Data Pump performance and reduce
CPU usage when table names and table structures are not altered or data is being filtered. This prevents the Data
Pump from looking up table definitions from either the database or from a data definitions file. The PASSTHRU
parameter is table-specific and can be configured with a wildcard character to apply to multiple tables.

If there are tables that require mapping or data conversions, use the NOPASSTHRU parameter. Tables listed with the
NOPASSTHRU parameter must be specified after the PASSTHRU parameter, as shown in the example below.

In the following example, the PASSTHRU parameter instructs the Data Pump to pass through all tables belonging to
the SOESMALL schema, but the SOEADMIN. OPS table is processed normally.

EXTRACT dpump_la

USERID soeadmin, PASSWORD ****

RMTHOST ggdb02, MGRPORT 8901

RMTTRAIL /home/oracle/goldengate/latest/dirdat os/aa

9 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-6062CE7F532E.htm%23GIORA121
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-CD8ABF2B-6ED2-48EE-8FD7-6062CE7F532E.htm%23GIORA121

REPORTCOUNT EVERY 15 MINUTES, RATE

PASSTHRU
TABLE SOESMALL. *;

NOPASSTHRU
TABLE SOEADMIN.OPS, WHERE (OPNO < 10);

A performance comparison test was performed to show the difference in elapsed time and CPU time with Data
Pump using the PASSTHRU and NOPASSTHRU (the default) parameters. The workload was a Swingbench online
transaction processing (OLTP) type workload with approximately 10 DML statements per transaction affecting three
tables (5 inserts, 5 updates). A total of 34 trail files were generated totaling 16GB in size.

The following graph shows the difference in elapsed time and CPU seconds used for the two tests.

500
450 et 414

400 -
350 -
300 -
250 -~
200 -
150 -
100 -
50 -

0 -

BNOPASSTHRU
PASSTHRU

Elapsed Time (secs) CPU time (secs)

There is a 6% reduction in elapsed time when using the PASSTHRU parameter, but the bigger difference is the
reduction in CPU time which is 37% less. This improvement can vary depending on the amount of data being
replicated that requires conversion or mapping by the Data Pump.

When replicating across a Wide Area Network (WAN), follow these best practices:
1. Tune TCPBUFSIZE and TCPFLUSHBYTES parameters.

The two RMTHOST parameters, TCPBUFSIZE and TCPFLUSHBYTES, are very useful for increasing the buffer
sizes and network packets sent by Data Pump over the network from the source to the target system. This is
especially beneficial for high latency networks.

It is recommended that you set these parameters to an initial value of 1MB (1,048,576 bytes) or the calculated
value, whichever is larger.

To determine a suitable value, perform the following steps:

10 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



a. Use the ping command to obtain the average round trip time (RTT).

For example:

% ping ggsoftware.com

Pinging ggsoftware.com [192.168.116.171] with 32 bytes of data:
Reply from 192.168.116.171: bytes=32 time=31lms TTL=56
Reply from 192.168.116.171: bytes=32 time=6lms TTL=56
Reply from 192.168.116.171: bytes=32 time=32ms TTL=56
Reply from 192.168.116.171: bytes=32 time=34ms TTL=56

Ping statistics for 192.168.116.171:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 31lms, Maximum = 6lms, Average = 39ms

b. Calculate the bandwidth-delay product (BDP).

For example, if the network between the source and target databases is 155 megabits per second (Mbits) and
the latency is 39ms the calculation would be as follows:

BDP = (155,000,000 / 8) * 0.039 = 755, 625bytes

c. Multiply the result by 3 to determine 3xBDP.

For example:

3xBDP = 755,625 x 3 = 2,266,875

In this example, because the result is more than 1MB, set the values of TCPBUFSIZE and TCPFLUSHBYTES to
2,266,875,

The parameters are set in the Data Pump parameter file. For example:

RMTHOST target, MGRPORT 7809, TCPBUFSIZE 2266875, TCPFLUSHBYTES 2266875

The maximum socket buffer size for non-Windows systems is usually limited by default.

Ask your system administrator to increase the maximum socket buffer size on the source and target systems so that
Oracle GoldenGate can increase the buffer size configured with the TCPBUFSIZE parameter.

2. Use Data Pump compression if network bandwidth is constrained and when CPU headroom is available.

Use Data Pump compression only if network bandwidth is insufficient or network latency is high. Before the Data
Pump sends the trail file data to the Collector process on the target database, data is compressed on the source.
The Collector process then uncompresses that data upon receipt, and the uncompressed data is written to the
target database trail files.

The compression ratio is dependent on the type of data contained in the trail files. For example, scalar data types
like VARCHARZ, DATE, and NUMBER compress better than compressed LOB column data. Enabling compression
uses more CPU for each Data Pump process on the source and for the Collection server process on the target

11 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



system. Compression is enabled in the Data Pump parameter file using the RMTHOST COMPRESSION
parameter.

As an example of the Data Pump performance benefits, with a 90ms network latency using a 10 Gigabit network
connection between two servers, and trail file data containing just scalar data types, the effects of adding
compression is shown in the following graph.

The graph shows a 64% reduction in time when compressions is enabled, with a 70% increase in CPU consumed
by the source Data Pump and the target Collector processes combined.

1600

1419

1400 -

1200 -

1000 -

800 - m Uncompressed

® Compressed
600 -
400 -

200 -

0 4
Elapsed Time (secs) CPU Time (secs)

With a lower network latency of 15ms, there was a performance degradation of 14%, with a 2X increase in CPU
consumed by the source Data Pump and the target Collector processes combined when Data Pump compression
was enabled, as shown in the following graph.

1400

1217

1200

1000

800
m Uncompressed

600 - B Compressed

400 -

200 -

0 4
Elapsed Time (secs) CPU Time (secs)

12 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



It is recommended that you test Data Pump compression in your current environment before deciding if it will be
of benefit.

For more information about the RMTHOST COMPRESSION parameter for Data Pump, refer to Reference Guide
for Oracle GoldenGate for Windows and UNIX at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-4675F779-D83C-4AF6-9B0A-
C811CC715F15.htm#GWURF631

Replicat Configuration

The Oracle GoldenGate Replicat processes running on the target database read the trail files and apply the data
using SQL DML statements on the replicated objects.

The following are recommendations to optimize Replicat performance.

1. Configure integrated Replicat.

Oracle recommends using integrated Replicat, introduced in Oracle GoldenGate Release 12.1 and Oracle
Database 11g Release 2 (11.2.0.4). Integrated Replicat leverages the database apply process functionality.
Referential integrity is maintained and DDL operations are automatically applied. This alleviates the database
administrator from having to understand how to partition tables between Replicat processes based on foreign key
constraints, or from having to ensure that the correct Replicat handles the DDL for tables.

Integrated Replicat offers automatic parallelism which automatically increases or decreases the number of based
on the current workload and database performance. Management and tuning of Replicat performance is simplified
because you do not have to manually configure multiple Replicat processes to distribute the tables between them.
Integrated Replicat automatically enables the asynchronous commit feature so processing can continue
immediately after each COMMIT command is issued.

For more information about integrated Replicat configuration, refer to Installing and Configuring Oracle
GoldenGate for Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-8AC69DA1-1117-47DE-BD8C-
DB3BC51A1DA1.htm#GUID-8AC69DA1-1117-47DE-BD8C-DB3BC51A1DA1

2. Set BATCHSQL in the Replicat parameter file.

By default, integrated Replicat tries to reorder and group DML statements of the same type against the same
object within each transaction, and applies the transaction DML as a batch instead of applying each DML
statement individually. Using batches can reduce the CPU and execution time of DML statements.

To increase the Replicat apply performance further, enable BATCHSQL, which groups multiple transactions into
fewer, larger transactions, batching the same DML types together. This is enabled by adding the BATCHSQL
parameter to the Replicat parameter file.

13 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-4675F779-D83C-4AF6-9B0A-C811CC715F15.htm%23GWURF631
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-4675F779-D83C-4AF6-9B0A-C811CC715F15.htm%23GWURF631
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-8AC69DA1-1117-47DE-BD8C-DB3BC51A1DA1.htm%23GUID-8AC69DA1-1117-47DE-BD8C-DB3BC51A1DA1
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-8AC69DA1-1117-47DE-BD8C-DB3BC51A1DA1.htm%23GUID-8AC69DA1-1117-47DE-BD8C-DB3BC51A1DA1

The following is an example from a target database AWR report, using integrated Replicat without BATCHSQL
enabled. There are 3-4 rows per execution on two of the tables.

SQL ordered by Executions

e N .
20,468 975 20,469,219 1.00 250866534 6 bu 23rgwk?16rb GoldenGate UPDATE /*+ restrlct_all_ref_c
20,486,454 20,485,811 1.00 291226209 58 GgBxtxZbhauzi GoldenGate INSERT /*+ restrict_all_ref c...
19,606,938 72,709,149 371 238143375 67 fdvaliufrmsx0 GoldenGate INSERT /*+ restrict_all_ref c...
19,510,351 65663725 337 247354848 1 Tkmvodxrdsuk? GoldenGate UPDATE /*+ restrict_all_ref_c...

When BATCHSQL is enabled, the rows per execution increases and the elapsed time decreases as shown below.

SQL ordered by Executions

R | E——— | ——
4,855,893 20,477,534 1,941.08 98.3 2 buérgwk7yérb GoldenGate UPDWATE i+ restrict_all_ref c..
4,855,639 20,476,399 472 167095383 7.8 5oSxtxZbhguz] GoldenGate INSERT /*+ restrict_all_ref_c...
4835 457 72,743,081 15.04 145391704 73 fdvgljufrmsxl  GoldenGate INSERT /*+ restrict_all_ref_c.
4,832 499 65,837,321 13.62 1,991.06 89.1 A Tkmvgdxrdsuk? GoldenGate UPDATE /*+ restrict_all_ref c..

By adding the BATCHSQL parameter to the Replicat parameter file, which enables BATCHSQL, this small OLTP
workload example improved performance by approximately 31%.

The maximum size of each statement batch is controlled by the BATCHSQL BATCHTRANSOPS parameter. The
default size of 50 for integrated Replicat is adequate in most cases, but changing the batch size may result in
performance gains.

Setting the batch size too low or too high may result in performance degradation. Integrated Replicat applies
transactions in parallel, so setting BATCHTRANSOPS too high can result in increased dependencies between
transactions, which results in slower performance. When changing the BATCHTRANSOPS size, do soin a
controlled manner so performance with the old and new settings can be accurately compared.

For more information about the BATCHSQL parameter refer to Reference for Oracle GoldenGate Windows and
UNIX at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-2ED88418-6ACB-484D-B140-
364232EC419A.htm#GWURF404

Configure the GoldenGate Heartbeat Table

Introduced in Oracle GoldenGate release 12.2.0.1 is the built-in heartbeat table feature that provides end-to-end
replication lag views without having to manually implement your own heartbeat table. After creating the heartbeat
table using the GGSCI command ADD HEARTBEAT, it is possible to see the end-to-end replication latency by
looking at the GG_LAG database view.

To create and enable the GoldenGate heartbeat table:

1. Add the following parameter to the GLOBALS file on both the source and target GoldenGate installations to set the
heartbeat table database schema name and table naming convention.

HEARTBEATTABLE SOE.GG_HEARTBEAT

14 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-2ED88418-6ACB-484D-B140-364232EC419A.htm#GWURF404
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-2ED88418-6ACB-484D-B140-364232EC419A.htm#GWURF404

It is recommended that you use a schema name (SOE in this example) that is already being replicated by
GoldenGate.

2. Create the heartbeat table and the scheduler jobs to update the heartbeat table using GGSCI.

GGSCI> DBLOGIN USERID SOE, password SOE
GGSCI> ADD HEARTBEATTABLE, FREQUENCY 5

This must be carried out on both the source and target databases.

3. Confirm the scheduler job was created in the source database.

SQL> select JOB NAME, START DATE, LAST START DATE, NEXT RUN DATE
from dba scheduler jobs where job name ='GG UPDATE HEARTBEATS';

Example output:

JOB NAME

GG UPDATE HEARTBEATS

16-NOV-16 03.15.44.030278 PM AMERICA/LOS ANGELES
15-DEC-16 11.41.21.188995 AM AMERICA/LOS_ ANGELES
15-DEC-16 11.41.24.000000 AM AMERICA/LOS_ ANGELES

If the LAST_START_DATE and NEXT_RUN_DATE columns are not updating, manually execute the scheduler job,
connected to the database as the heartbeat table owner as shown here.

SQL> connect soe/soe
SQL> exec dbms_scheduler.run_ job ('GG_UPDATE_ HEARTBEATS') ;

4. Monitor the replication on the target database.

col Lag(secs) format 999.9

col "Seconds since heartbeat" format 999.9

col "GG Path" format a32

col TARGET format al2

col SOURCE format al2

set lines 140

SELECT remote database "SOURCE", local database "TARGET", incoming path "GG
Path", incoming lag "Lag(secs)", incoming heartbeat age "Seconds since heartbeat"
FROM ggadmin.gg lag;

For more information about creating the heartbeat table, refer to Reference for Oracle GoldenGate on Windows and
UNIX at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-126 E30A2-DC7A-4C93-93EC-
OEB8BA7C13CB.htm#GWURF1238

15 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-126E30A2-DC7A-4C93-93EC-0EB8BA7C13CB.htm#GWURF1238
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-126E30A2-DC7A-4C93-93EC-0EB8BA7C13CB.htm#GWURF1238

Database File System (DBFS) Configuration

When running Oracle GoldenGate on Oracle Exadata Database Machine, with Oracle RAC or Oracle Data Guard
configurations, Oracle recommends placing the shared Oracle GoldenGate files (trail files, checkpoint files, bounded
recovery files, and parameter files) on Database File System (DBFS) file systems. Using DBFS provides integration
with Cluster Ready Services (CRS) which automates DBFS file systems mounting on a surviving node in the Oracle
RAC cluster. This allows Oracle GoldenGate processes to automatically start after the required file systems have
been mounted.

For details about how to configure DBFS for optimal performance and availability, refer to the “Oracle GoldenGate
on Exadata Database Machine Configuration” MAA white paper at

http://www.oracle.com/technetwork/database/features/availability/maa-wp-gg-oracledbm-128760.pdf

Using DBFS with Oracle Data Guard and Oracle GoldenGate provides synchronization between the source and
target databases with the external files used by Oracle GoldenGate. This is important during role transitions,
especially for automatic restart of Oracle GoldenGate processes after a failover. For information about the
configuration of such an environment refer to the “Transparent Zero Data-Loss Role Transition with Oracle Data
Guard and Oracle GoldenGate” MAA white paper at

http://www.oracle.com/technetwork/database/availability/ogg-adg-zdI-2219106.pdf

Data Gathering for Oracle GoldenGate Performance

To troubleshoot Oracle GoldenGate performance there are several key pieces of information that must be gathered
and analyzed. You normally start tuning when you first encounter an unacceptable lag or latency (the time taken to
extract or apply the data from the time it was created on the source database) and the throughput decreases.
Because of the decoupled architecture of Oracle GoldenGate it is important to gather performance data on both the
source and target environments for the same time period.

The following pieces of information are necessary for Oracle GoldenGate performance analysis:
e Latency or lag time for each Oracle GoldenGate process.
e Oracle GoldenGate process report files and the ggserr.log error log.
e Automatic Workload Repository (AWR) and Active Session History (ASH) database reports.
e CPU and /O data.
e Oracle Streams Performance Advisor (SPADV) report.
e Integrated Capture and Integrated Replicat healthcheck report.

It is recommended to use the script provided in MOS note 2262988.1 to gather all of the above information covering
the same period of time:

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=2262988.1&h=Y

16 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://www.oracle.com/technetwork/database/features/availability/maa-wp-gg-oracledbm-128760.pdf
http://www.oracle.com/technetwork/database/availability/ogg-adg-zdl-2219106.pdf
https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=461053.1&h=Y

The script is run on each server where Oracle GoldenGate processes are running.

Refer to Appendix A for more detailed instructions on how to manually gather these key pieces of information.

Oracle GoldenGate Performance Tuning Methodology

Before you try to diagnose slow performance in an Oracle GoldenGate environment, it is important to first
understand the flow of data between the source and target databases. The following figure shows the flow of data
between the source and target databases.

1 . 3 4 >

i __ _ E5cs >’ 4 {
Extract WY Trail ﬂ’"ﬂ)> | | > “ T.ra|l Replicat
3: & Files J Files |

[

Source
Database

LAN/ WAN/ Internet
Over TCPIIP

Fump [ Trail Y
= = |Files | {

3

2

Extract

1

arget
Database

Bi-directional

The following components are capable of contributing to a performance bottleneck:

1. Oracle log files are read by the Extract process capturing any required data for replication.

2. Extract carries out any mapping and conversion to the data and then writes it out to the trail files.
3. Data Pump reads the trail files and carries out any mapping and conversion required to the data.

4. Data Pump transfers the trail files from the source system to the target system where it is written by the Collector
process to the remote trail files.

5. Replicat reads the trail file, applies any mapping and conversions, and applies the data to the target database
using SQL statements.

The following workflow demonstrates how to determine and resolve where replication latency is introduced in Oracle
GoldenGate and, consequently, where the performance bottleneck is present. Performance tuning is an iterative
process. Once something has been changed in the environment, lag needs to be monitored and then the tuning
process repeated.

1. Locate where the latency is first reported, moving from Extract to Replicat.

Move from the source to target side, using the previously recommended method to gather data to view the Oracle
GoldenGate process latency (database queries, ggserr.log, ggsci INFO *, LAG EXTRACT, or LAG
REPLICAT).

Once the process with lag has been determined, continue to the next step.

17 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



The following example shows output from the ggserr. 1og file for an Extract and Data Pump process with
increasing lag.

2014-11-01 00:47:30 INFO 0GG-01026 Oracle GoldenGate Capture for Oracle,
dpump la.prm: Rolling over remote file /goldengate/latest/dirdat os/aa000031.
2014-11-01 00:47:37 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,
mgr.prm: Lag for EXTRACT DPUMP 1A is 00:00:04 (checkpoint updated 00:00:02 ago) .
2014-11-01 00:47:37 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,
mgr.prm: Lag for EXTRACT EXT 1A is 00:00:21 (checkpoint updated 00:00:08 ago) .
2014-11-01 00:48:37 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,
mgr.prm: Lag for EXTRACT DPUMP 1A is 00:00:21 (checkpoint updated 00:00:08 ago) .
2014-11-01 00:48:37 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,
mgr.prm: Lag for EXTRACT EXT 1A is 00:00:27 (checkpoint updated 00:00:01 ago) .

It is interesting to note that when Extract lag increases, so does Data Pump lag. This implies that if you resolve
the Extract lag, the Data Pump lag also decreases. Depending on when the last checkpoint of each process
occurred, the lag values may differ.

2. Latency is reported for an Extract process (not a Data Pump Extract).

a. If the Extract process (classic or integrated capture mode) is reaching maximum CPU (90-100%) as shown in
top, create an additional Extract process and partition the work to be extracted between them. When dividing
workload between Extract processes you must also create additional Data Pump and Replicat processes.

For example:

top - 18:22:41 up 184 days, 3:52, 4 users, load average: 1.00, 0.66, 0.37
Cpu(s): 7.8%us, 1.3%sy, 0.0%ni, 90.5%id, 0.5%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 99060552k total, 61840724k used, 37219828k free, 3399436k buffers
Swap: 25165816k total, Ok used, 25165816k free, 24251384k cached

PID USER PR NI VIRT RES SHR S $CPU $MEM TIME+ COMMAND
79023 oracle 20 0 697m 61lm 31m R 98.8 0.1 5:17.75
/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext la.prm
79034 oracle 20 0 697m 6Ilm 31lm S 52.1 0.1 2:46.17
/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext la.prm
78929 oracle 20 0 232m 24m 14m R 38.8 0.0 2:04.78
/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext la.prm

To ensure data integrity, parent and child tables with referential integrity relationships should be processed by
the same Extract process.

b. If one or more of the LogMiner preparer processes are reaching maximum CPU (90-100%), the LogMiner
Reader (LMR) has a high percentage of flow control, and if there is available idle time for the LogMiner builder
(LMB) process, increase the Extract PARALLELISM parameter (described earlier). This shows up in top and
SPADV.

The following is an example of SPADV output.

PATH 2 RUN _ID 42 RUN TIME 2013-MAR-21 15:16:16 CCA Y

[<C> OGGSCAP_EXT 1A 125182 125147 94239 LMR 0% 80% 20% "CPU + Wait for CPU" LMP
(1) 0% 0% 100% "CPU + Wait for CPU" LMB 60% 0% 40% "CPU + Wait for CPU" CAP 60%
% 40% "CPU + Wait for CPU" |<Q> "STREAMSADMIN"."OGGSQ EXT 1A" 125126 0.01 564
|<A> OGGSEXT 1A 0.01 0.01 0 |<B> NO BOTTLENECK IDENTIFIED

18 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



The following is an example of top output.

top - 15:16:09 up 71 days, 45 min, 4 users, load average: 2.13, 1.39, 0.95
Cpu(s): 13.8%us, 1.3%sy, 0.0%ni, 84.7%id, 0.2%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 99060552k total, 58834488k used, 40226064k free, 2644064k buffers
Swap: 25165816k total, Ok used, 25165816k free, 21705628k cached

PID USER PR NI VIRT RES SHR S %$CPU $MEM TIME+ COMMAND
86969 oracle 20 0 18.0g 520m 509m R 99.7 0.5 8:03.73 ora ms02_GGS1
86955 oracle 20 0 18.1g 543m 520m R 55.7 0.6 4:33.26 ora cp03 GGS1
87064 oracle 20 0 446m 75m 18m R 48.9 0.1 3:58.58
/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext la.prm

The following query can be used to identify the LMP process identifiers.

SELECT c.capture name, lp.spid
FROM VSLOGMNR PROCESS lp, DBA CAPTURE c
WHERE lp.session id=c.logminer id
AND lp.role='preparer';

c. If there are I/0 waits in the source database for log file reads (for example, if AWR shows ‘log file sequential
read’ > 20ms), place the log files on a faster I/O system.

d. If there are 1/0 wait times on the Oracle GoldenGate trail file location, move the trail files to a higher performing
file system.

When trail files are located on non-DBFS storage, use iostat to quickly identify the issue. For example:

$ iostat -x 30

Time: 12:35:00 PM

avg-cpu: %user %nice %system %$iowait $steal $idle

17.03 0.00 3.47 7.83 0.00 71.68
Device: wram/s r/s w/s wkB/s avgrg-sz avgqu-sz await svectm Sutil
sda2 8361.40 0.00 445.60 38630.40 173.39 88.49 192.18 1.38 61.48

Time: 12:35:30 PM

avg-cpu: S%user %nice %system %iowait S%$steal %idle

14.76 0.00 2.31 8.81 0.00 74.12
Device: wram/s r/s w/s wkB/s avgrg-sz avgqu-sz await svetm Sutil
sda2 18551.60 0.00 994.80 77213.60 155.23 187.03 175.34 1.01 100.00

If trail files are located on a DBFS file system, a combination of 1ostat and Automatic Workload Repository
(AWR) reports from the DBFS instance can similarly identify any I/O contention.

e. If you are using integrated Extract and if there are high background waits (>25%) in the source database AWR
report for ‘LogMiner preparer: memory’ or ‘LogMiner reader: buffer’, increase the MAX SGA SIZE Extract
parameter by 25%. Make sure the STREAMS POOL_SIZE initialization parameter is sized large enough.
Memory sizing was discussed earlier in this white paper.

The following is an example from an AWR report.

19 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



Event Waits %Time Total Wait Avg wait % bg
-outs Time (=) (ms) Fre

[LogMiner preparer: memory | 512,085 | 6,375 | 12| 28.83| 39.86
|LogMiner reader: buffer 1,015,017 | 1ﬁ| 3,564 | 4| 5715 2228

3. Latency is reported for a Data Pump process.

a. If the Data Pump process is reaching maximum CPU (90-100%) as shown in top, using the PASSTHRU
parameter helps decrease CPU consumption (detailed previously in this white paper). If this does not help due
to data mappings, create an additional Data Pump process and partition the work between them. This should
only occur when the Data Pump process processing many transformations or conversions. You must also
configure multiple Replicat processes on the target database to apply trail files from the different Data Pumps.

The following example shows top output.

top - 14:47:27 up 8 days, 22:47, 3 users, load average: 0.83, 0.38, 0.14
Cpu(s): 4.0%us, 0.4%sy, 0.0%ni, 95.5%id, 0.0%wa, 0.0%hi, 0.1%si, 0.0%st
Mem: 99060552k total, 61544204k used, 37516348k free, 1390584k buffers

Swap: 25165816k total, Ok used, 25165816k free, 26834216k cached

PID USER PR NI VIRT RES SHR S $CPU $MEM TIME+ COMMAND
34485 oracle 20 0 249m 32m 15m R 99.3 0.0 2:18.08 /u0l/
goldengate/latest/extract PARAMFILE

b. If there are I/O wait times on the Oracle GoldenGate trail file location, move the trail files to a higher performing
file system. This problem also appears in Extract performance. For an example, refer to item 2d in the
preceding section.

c. If there are 1/0 wait times on the Oracle GoldenGate trail file location on the target database, move the trail files
to a higher performing file system. This problem also appears in Replicat trail file reading performance
(discussed later in this white paper). For an example, refer to item 2d in the preceding section.

d. If there is a network bandwidth or high latency problem identified by operating system utilities or network
monitoring tools, consider enabling Data Pump compression as detailed in “Data Pump Configuration” on page
9.

4. Latency is reported for a Replicat process.

a. If a Replicat or the network receiver process (ANR) is reaching maximum CPU (90-100%) as shown in top,
create an additional Replicat process and partition the work between the new process and the bottlenecked
Replicat process.

Before dividing the work between multiple Replicat processes, consider the following:
» Referential integrity between tables

To ensure data integrity, parent and child tables with referential integrity relationships should be processed
by the same Replicat process. For tables that are not part of referential integrity constraints, (for example,

20 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



Peoplesoft Payroll tables), assigning tables among multiple Replicat processes becomes an easier task by

evenly distributing the load among each Replicat process.

» Handling of DDL statements

In order to avoid locking conflicts between Replicat processes, it is very important to understand the nature of
DDL statements that occur against replicated objects. You must apply DDL with the same Replicat process
that applies DML for the table. If not configured in this way, the Replicat processes can abort when a DDL
statement times out waiting for another process to finish applying DML to the same table. There are two
ways to avoid this issue:

» Use coordinated Replicat. Coordinated Replicat is a multithreaded process that applies transactions in
parallel instead of serially. Each thread handles all of the filtering, mapping, conversion, SQL
construction, and error handling for its assigned workload. A coordinator thread coordinates transactions
across threads to account for dependencies, and also ensures that DDL is applied in a synchronized
fashion preventing DML from occurring on the same object at the same time. For more information
about coordinated Replicat, refer to Administrating Oracle GoldenGate for Windows and UNIX at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-
AS4FC7446E67.htm#GWUAD953

Oracle recommends that you avoid using the @RANGE function to divide a table among Replicat
processes if DDL is also replicated for the table. It is not possible to predict if all DML is completed
before the DDL is applied. To help alleviate the DDL timeout issue, use the DDL EXCLUDE or
INCLUDE parameters to instruct the Replicat process to which tables DDL can be applied.

»

¥

For more details about replicating DDL statements, refer to the Installing and Configuring Oracle GoldenGate
for Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-
C9431E1FF034.htm#GIORA285

For information about automating the workload division between multiple Replicat processes, refer to MOS
Note 2224542.1 at

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

If Replicat is doing a lot of data transformations, consider moving the transformations to the Data Pump

process.

The following example shows SPADV output that shows the ANR process as the bottleneck.

PATH 2 RUN ID 38 RUN TIME 2016-DEC-12 15:43:23 CCA Y

|<PR> "replicat"=> 0% 0% 100% "CPU + Wait for CPU" |<Q>

"SOESMALL" ."OGGQSREP 1A" 148384 0.01 217 |<A> OGGSREP 1A 145696 29 -1 APR 6.7%
% 93.3% "CPU + Wait for CPU" APC 100% 0% 0% "™ APS (11) 886.7% 0% 213.3% "CPU
+ Wait for CPU" |<B> "replicat"=> 3873 9 100.% "CPU + Wait for CPU"

The top output also shows the ANR process as the highest CPU consumer.

PID USER PR NI VIRT RES SHR S $CPU $MEM TIME+ COMMAND
25038 oracle 20 0 38.9g 1.6g 1.6g S 92.6 0.7 8:38.34 oracleTEST11
(DESCRIPTION=(LOCAL=YES) (ADDRESS= (PROTOCOL=beq)))

25070 oracle 20 0 38.9g 1.5g 1.5g R 69.0 0.6 7:08.56 ora as0l TEST11
25030 oracle 20 0 504m 46m 2Im S 65.5 0.0 6:24.45
/u0l/oracle/goldengate/gal22 1lg/replicat PARAMFILE /u0l/oracle/golde

25074 oracle 20 0 38.9g 1.7g 1.7g S 21.5 0.7 1:49.42 ora as03 TEST11
25072 oracle 20 0 38.9g 1.7g 1.7g S 21.0 0.7 2:00.73 ora as02 TESTI11

21 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm%23GWUAD953
http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm%23GWUAD953
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-C9431E1FF034.htm%23GIORA285
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-C9431E1FF034.htm%23GIORA285
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

The ANR process can be identified using the following query.

SQL> SELECT DST QUEUE SCHEMA, DST QUEUE NAME, TOTAL MSGS, SPID, STATE
from VSPROPOGATION RECEIVER;

DST QUEUE SCHEMA DST QUEUE NAME TOTAL MSGS SPID

SOE OGGQSREP_ 1A 90848 25038

b. If there are 1/O wait times on the Oracle GoldenGate trail file location, move the trail files to a higher performing
file system.

This problem also appears in Data Pump performance. If multiple Replicat processes are configured to read the
same trail files, consider using additional Data Pump processes so that fewer Replicat processes are reading
from the same files concurrently. For an example, refer to item in the preceding section 2d (If latency is
reported for an Extract process).

c. If there are no bottlenecks for the Replicat or ANR processes (not constrained by CPU or trail file 1/0), but lag is
being reported for the Replicat process by GoldenGate, it is likely due to one of the integrated apply processes.
Use SPADV to identify which process is closest to 100% CPU, and then use the following to guide you in
resolving it.

i. Apply Reader (APR) process.

The apply reader process is responsible for accumulating the changes into transactions, computing
dependencies between them, and then passing them to the apply coordinator.

Here is an example SPADV output showing the apply reader bottlenecked by CPU.

PATH 1 RUN _ID 37 RUN TIME 2017-JAN-17 15:40:41 CCA Y

|<PR> "replicat"=> 13.3% 0% 86.7% "CPU + Wait for CPU" |<Q>
"SOESMALL"."OGGQSREP 1A" 180238 0.01 2437 |<A> OGGSREP 1A 185704 37
4032936 APR 0% 0% 100% "CPU + Wait for CPU" APC 100% 0% 0% "" APS (6)
373.3% 0% 226.7% "CPU + Wait for CPU" |<B> OGGSREP_1A APR 3326 7 100.%
"CPU + Wait for CPU"

Linux top output also shows the apply reader is the top CPU consumer.

PID USER PR NI VIRT RES SHR S $CPU $MEM TIME+ COMMAND
54761 oracle 20 0 18.1g 406m 376m R 99.4 0.4 7:41.58 ora as0l_GGAl
54770 oracle 20 0 18.1g 5.5g 5.5 R 92.3 5.8 4:36.99 ora as05 GGAl
55314 oracle 20 0 18.1g 6.1g 6.1g S 91.5 6.5 5:49.73 ora as06 GGAl
54767 oracle 20 0 18.1g 5.5g 5.5g R 91.2 5.8 4:55.66 ora as04 GGAl
54765 oracle 20 0 18.1g 5.3g 5.3g S 80.8 5.6 4:26.92 ora as03 GGAl
54684 oracle 20 0 320m 73m 25m R 54.3 0.1 4:06.57

/ul0l/oracle/goldengate/replicat PARAMFILE /u0l/oracle/golden

When the apply reader is bottlenecked on CPU, there are three possible solutions:
» Reduce the number of foreign key or primary key constraints to reduce the key dependency computations.

» Increase the source transaction sizes to reduce the overhead of transaction dependency tracking.

» Create multiple integrated Replicat processes and manually partition groups of dependent objects between
them. Refer to MOS Note 2224542.1 at

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

22 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

ii. Apply Coordinator (APC) process

The apply coordinator process is responsible for batching transactions together and scheduling them with the
apply server processes. It is less common to see the apply coordinator as the bottlenecked process, but it
can be caused by using a BATCHSQL BATCHTRANSOPS value that is too high. If the apply coordinator is
constrained by CPU, try reducing the BATCHTRANSOPS size or create multiple integrated Replicat
processes and manually partition groups of dependent objects between them. Refer to MOS Note 2224542.1
at

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

The following is an example of SPADV output.

PATH 2 RUN ID 71 RUN TIME 2014-JUL-24 11:26:18 CCA Y

|[<R> REP_1A 51062 7371910 0 6.7% 80% 13.3% "" [<Q> "SOESMALL"."OGGQSREP 1A"
50801 0.01 5001 |<A> OGGSREP 1A 43127 8304 3003835 APR 0% 46.7% 53.3% "CPU +
Wait for CPU" APC 0% 0% 100% "CPU + Wait for CPU" APS (8) 573.3% 0% 220% "CPU
+ Wait for CPU" |<B> OGG$REP_1A APC 786 26382 100.% "CPU + Wait for CPU"

iii. Apply Server (APS) processes
The apply server processes are responsible for applying the DML to the database. If constrained by CPU
and if the SQL Statistics AWR report shows small numbers of rows per execution, enable Replicat

BATCHSQL or increase the size of BATCHTRANSOPS.

The following is an example of SPADV output when APS is CPU bound.

PATH 2 RUN ID 68 RUN TIME 2014-JUL-28 13:25:55 CCA Y

|<R> REP_1A 148538 20965388 0 0% 13.3% 73.3% "CPU + Wait for CPU" [<Q>
"SOESMALL"."OGGQSREP 1A" 148318 0.01 4289 |<A> OGGSREP 1A 141917 15280 -1 APR
0% 0% 100% "CPU + Wait for CPU" APC 66.7% 0% 33.3% "CPU + Wait for CPU" APS
(13) 400% 0% 880% "CPU + Wait for CPU" |<B> OGGSREP_1A APS 1497 21494 100.%
"CPU + Wait for CPU"

The following AWR report shows a small number of rows per DML statement because BATCHSQL is not

enabled.
SQL orde red by Exec utions
e ——
20,468,975 20,458,215 1.00 2,508.66 53.4 bu 23rgwk7y_6rb GoldenGate UPDATE /*+ restrlc‘t_all_ref_c
20,486,454 20,466,811 1.00 291226209 58 5oSxtxZbhquzi GoldenGate INSERT /*+ restrict_al_ref_c...
19,606,938 72,709,149 371 238143375 67 fivoliufrmsx0 GoldenGate INSERT /*+ restrict_all_ref_c...
19,510,351 65,663,725 337 247854848 1 Tkmvodxrdsuk? GoldenGate UPDATE /+ restrict_all_ref_c...

When BATCHSQL is enabled, the rows per execution increases and the elapsed time decreases, as shown in
the following report.

SQL ordered by Executions

e I S I,
4,355,893 20,477,534 194108983 2 buZSrgwk?yE-rb GoldenGate UPDATE /*+ restrict_all_ref_c..
4,855,639 20,476,399 422 167095393 7.8 b5g8xtx2bhquzi GoldenGate INSERT /*+ restnct_au_ref_c...
4,835 457 72,743,061 15.04 145391704 73 févgljufrmsx0  GoldenGate INSERT £+ restrict_all_ref_c...
4,832 499 65,837,321 1362 1,991.06 89.1 A Tkmvadxrdsuk? GoldenGate UPDATE /*+ restrict_all_ref c...

23 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

It is possible that the apply server processes are contending for database resources, much in the same way
a user process does. For example, for I/0, data block accesses, or index block updates. In such scenarios,
SPADV or AWR indicate this.

The following example shows SPADV output.

PATH 2 RUN ID 53 RUN TIME 2014-JUL-30 13:13:24 CCA Y

|<R> REP_1A 51492 7242294 0 0% 86.7% 13.3% "" [<Q> "SOESMALL"."OGGQSREP 1A"
51398 0.01 5001 |[<A> OGGSREP 1A 46399 5193 -1 APR 0% 53.3% 46.7% "CPU + Wait
for CPU" APC 93.3% 0% 6.7% "" APS (11) 26.7% 0% 673.4% "cell single block

physical read" |<B> OGGSREP_1A APS 1440 14146 66.7% "cell single block
physical read"

The following report shows AWR background process wait events:

Background Wait Events
m

cell single block physical read 11,847 693 13,641 115 7.09 3381
db file parallel write 335,208 0 4 896 14.61 0.20 13.83
write complete waits 3,245 0 3,981 1226 67 0.00 11.33

Note that the apply server processes are considered background processes, and so they are included in the
background wait events section of the AWR report.

The following AWR report shows that the SQL being applied by Oracle GoldenGate has the highest I/0 wait
times.

SQL ordered by User I/0 Wait Time
| User 110 Time (s} | Executions | UIO per Exec (s) | %Total [ Elapsed Time (s)[%cPu] wio | satid [ soLModue | soitedt |

10,173.47 1,652,136 0.01 7355 14,718.69 1816 69.12 Tkmvgdxrdsuk? GoldenGate UPDATE /*+ restrict_all_ref_c...
Z512.04 1,652,174 0.00 1888 466234 1812 56.02 bgéxtx2bhquz] GoldenGate INSERT /*+ restrict_all_ref_c...
601.62 1,652,152 0.00 435 227372 2688 2646 fdvaljufrmsx0  GoldenGate INSERT /*+ restrict_all_ref_c...
233.50 1,652,158 0.00 1.69 2,189.53 4835 10.66 bu28rgwk7yérb GoldenGate UPDATE /*+ restrict_all_ref_c...

In such cases, evaluate database or object tuning techniques to improve performance. Refer to Oracle
Database Performance Tuning Guide at

http://docs.oracle.com/database/121/TGDBA/toc.htm

There are cases when the cause for slowness among the apply server processes is large batch operations
against a set of tables that differs from normal OLTP operations, such as large history or reporting tables.
Distributing these objects into a separate Replicat process can significantly increase the apply performance.

The following example SPADV output shows one apply server process (APS) consuming large amounts of
CPU while the others are idle. With integrated Replicat the apply server processes must wait for the large
transaction to be applied before the OLTP transactions can continue. There is only one APS process at
100% CPU and nine of them idle (900%).

PATH 2 RUN ID 63 RUN TIME 2017-JAN-17 20:58:19 CCA Y

|<R> REP_1A 26475 8091556 0 0% 0% 100% "CPU + Wait for CPU" |<Q>

"SOESMALL" ."OGGQSREP_ 1A" 26326 0.01 4931 |<A> OGGSREP 1A 115113 0.01 1208876
APR 26.7% 0% 73.3% "CPU + Wait for CPU" APC 100% 0% 0% "" APS (10) 900% 0%
100% "CPU + Wait for CPU" |<B> OGG$REP_1A APS 1504 3542 100.% "CPU + Wait for
CPU”

24 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://docs.oracle.com/database/121/TGDBA/toc.htm

Linux top output also shows one apply server process consuming much larger amounts of CPU than the
other processes.

PID USER PR NI VIRT RES SHR S $CPU $MEM TIME+ COMMAND
88004 oracle 20 0 18.1g 9.5g 9.5g R 92.9 10.1 4:11.70 ora as09 GGAl
85438 oracle 20 0 33Im 75m 25m R 82.0 0.1 11:41.74
/u0l/oracle/goldengate/HungFixl/replicat PARAMFILE /u0l/oracle/golde
85444 oracle 20 0 18.1g 4.1g 4.1g R 79.4 4.4 11:31.97 oracleGGAl
(DESCRIPTION=(LOCAL=YES) (ADDRESS= (PROTOCOL=beq)) )

85500 oracle 20 0 18.4g 4.2g 4.0g R 73.1 4.5 11:37.00 ora as01 GGAl
86892 oracle 20 0 18.1g 6.1g 6.1g R 32.8 6.5 4:50.19 ora as08 GGAl
85504 oracle 20 0 18.1g 6.79 6.7g R 32.2 7.2 7:01.56 ora as03 GGAl

Dividing the work between two integrated Replicat processes shows a 31% performance increase.

Single vs Multiple Integrated Replicats

1200

954 secs
1000
800 657 secs

569 secs
600
400
200
] T T T 1
Rep#l Rep#l Rep#2

NOTE: When using multiple integrated Replicat processes with Oracle GoldenGate Release 12.1.2.0, be sure to
apply Oracle GoldenGate performance patch 19261665 to enable faster reading through the trail files containing
uninterested transaction data.

25 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



Conclusion

Key configuration recommendations were presented for the source and target databases, along with the Oracle
GoldenGate Extract, Data Pump, and Replicat processes.

To optimize an Oracle GoldenGate environment, the following crucial pieces of data must be gathered:

>

v

Oracle GoldenGate process lag information

o

M

Report files and error logs

Active Workload Repository (AWR) and Active Session History (ASH)

» CPU data

1/O data

Oracle Streams Performance Advisor (SPADV) for integrated Extract and integrated Replicat

o

v

P

v

P

v

>

M

Integrated Extract and integrated Replicat healthcheck

With all of this information gathered, the presented tuning methodology can be followed to identify and resolve the
current cause of lag or latency.

Performance tuning is an iterative process, such that when the cause of lag is resolved, the process begins again
with data gathering and analysis.

Using this approach, the previously described performance tuning exercise with a Swingbench OLTP workload
demonstrated how Oracle GoldenGate Extract to Replicat performance could be increased by a factor of 20 times.
Replicat apply rate of the source redo increased from 3.8MB/second to 78.1MB/second using an integrated Extract
and integrated Replicat configuration.

26 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



Appendix A — Oracle GoldenGate Performance Information Gathering

To troubleshoot Oracle GoldenGate performance there are several key pieces of information that must be gathered
and analyzed. The following information should always be gathered covering the same point in time and on all
servers running Oracle GoldenGate processes that are part of the same replication data flow.

Oracle GoldenGate Latency

Latency or lag is the period of time that has passed between when a change (DML or DDL) occurred in the source
database and the current point in time. For example, Extract latency is the time that has elapsed since the change
occurred to the source table and the time it was extracted and written to the trail file. Conversely, Replicat latency is
the time that has elapsed from the source table change to the time it was applied to the target database.

The amount of acceptable lag time is dependent on an agreed upon Service Level Agreement (SLA) that states how
much time is allowed to pass between when the data was entered in the source database to the time it appears on
the target database. A lag time of 30+ minutes may be acceptable for offloading data for ad-hoc queries but not for a
banking application that often requires near zero latency.

When using integrated Extract or integrated Replicat, the latency can be determined by querying the database or by
using the GoldenGate GGSCI utility.

Determining Latency for Integrated Extract

» Using a database query:

SQL> SELECT capture name, 86400 *(available message create time -
capture message create time) latency in seconds FROM GV$SGOLDENGATE CAPTURE;

» Using GGSCI:
GGSCI> lag extract <extract name>

Determining Latency for Integrated Replicat

» Using a database query:

SQL> SELECT r.apply name, 86400 *(r.dequeue time - c.lwm message create time)
latency in seconds FROM GVS$SGG APPLY READER r, GVSGG APPLY COORDINATOR c WHERE
r.apply# = c.apply# and r.apply name = c.apply name;

» Using GGSCI:
GGSCI> lag replicat <replicat name>

Lag is also reported by the Oracle GoldenGate manager process for both integrated and non-integrated Extract and
Replicat. Specify the following GoldenGate manager parameters in the manager parameter file located at
$GG_install dir/dirprm/mgr.prm.

LAGREPORTMINUTES 5 -- Interval at which lag is checked
LAGINFOMINUTES 5 -- Threshold at which lag is reported
LAGCRITICALMINUTES 15 -- Critical threshold reporting value

The values for these parameters depend on your acceptable lag time.

Latency is written to the ggserr. 1og file that is automatically created in the Oracle GoldenGate installation
directory (in hours:minutes:seconds format). For example:

Manager for Oracle, mgr.prm: Lag for REPLICAT REP 1A is 00:00:06 (checkpoint
updated 00:00:01 ago) .

27 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



2011-09-30 23:48:38 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,
mgr.prm: Lag for REPLICAT REP_1B is 00:06:37 (checkpoint updated 00:00:00 ago) .
2011-09-30 23:48:38 WARNING OGG-00947 Oracle GoldenGate Manager for Oracle,
mgr.prm: Lag for REPLICAT REP_1C is 00:05:23 (checkpoint updated 00:00:04 ago) .

If the latency is higher than what is acceptable, gather the recommended data listed in this section and follow the
performance tuning methodology described below to determine and resolve the performance bottleneck.

Oracle GoldenGate Report Files and Error Logs

Each Extract, Data Pump, and Replicat process generates an ongoing report file with the following information:
» Parameters in use

» Table and column mapping

» Runtime messages and errors

» Runtime statistics

To monitor Oracle GoldenGate performance, set the REPORTCOUNT parameter in the GoldenGate process
parameter file to report real-time statistics.

REPORTCOUNT EVERY 15 MINUTES, RATE

This parameter should be set for all Extract, Data Pump, and Replicat processes to a suitable interval rate
(recommended maximum value of 15 MINUTES). The report file contains entries to show the current processing
rates. For example:

13688414 records processed as of 2014-07-28 22:17:17 (rate 114065, delta 132143)
141743251 records processed as of 2014-07-28 22:32:19 (rate 131239, delta 129957)

The Oracle GoldenGate process report files are located in the $GG_install dir/dirrpt directory.

This example shows that a Replicat process applied 132,143 and 129,957 records in the two sample intervals,
which are fifteen minutes apart.

Both the processing rates and the lag should be continually monitored for sudden changes to Oracle GoldenGate
performance levels.

Automatic Workload Repository and Active Session History

Automatic Workload Repository (AWR) is a good starting point for identifying general database performance issues
which can provide initial indicators to help locate problems with Extract or Replicat processes. Using AWR, you can
easily determine if the bottlenecks are inside or outside of the database.

After analyzing the relevant AWR reports, use Active Session History (ASH) to look at more detailed information on
particular sessions in the database, like those of a Replicat process. Each Replicat and Extract process is given a
unique SQL module ID that can be used for identification in AWR and ASH reports.

For example:

28 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



%Total | %CPU SQL id SQL Module SQL Text

2,338.40 10,697 022 2030[ 11.45[89.86 [bkpt6pa2stédg |[0GG-REP_1F2- INSERT INTO
OPEN_DATA_SOURCE |"PSFT"."PS_TAX_BAL...

1,673.20 16,896 0.10[ 1453 [ 1963 [83.02 [6xxritpzaz5s2 [0GG-REP_1A- INSERT INTO
OPEN_DATA_SOURCE |"PSFT"."PS_EARNING...

The Replicat names in this example are REP_1F2 and REP_1A,

An ASH report can be created for a specific Replicat process by running the
SORACLE HOME/rdbms/admin/ashrpti.sql script and using the SQL module name. Use the generated
report to further investigate why a particular Replicat process is not performing as expected.

CPU Data

Gathering CPU data with operating system tools like top is essential to see if Oracle GoldenGate processes are
bottlenecked on CPU rather than 1/O or some other database process. As a general rule, if the Replicat process is
not on CPU for at least 40% of the time, then it is constrained by something else such as I/O or database processing
of the replicated SQL statements. It is important to gather CPU data that shows each thread of execution within a
process. For example, an Extract process uses multiple threads, and it is important to be able to identify each thread
instead of the entire process consuming CPU.

The following example shows the result of using top without any thread-specific parameters.

top - 12:51:02 up 182 days, 20:51, 3 users, load average: 0.09, 0.14, 0.09
Cpu(s): 5.7%us, 0.9%sy, 0.0%ni, 93.4%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st
Mem: 99060552k total, 42003164k used, 57057388k free, 1219612k buffers
Swap: 25165816k total, Ok used, 25165816k free, 8591940k cached

PID USER PR NI VIRT RES SHR S $CPU %MEM TIME+ COMMAND
76001 oracle 20 0 739m 68m 32m R 117.7 0.1 15:06.70
/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext la.prm

The Extract process in the above example is using 117.7% CPU, so it is not possible to verify if one of the process
threads is bottlenecked on CPU. Instead, use top parameters to show process threads (top —H for Linux) as
shown below.
top - 12:51:45 up 182 days, 20:51, 3 users, load average: 0.19, 0.16, 0.10
Cpu(s): 6.5%us, 1.2%sy, 0.0%ni, 92.3%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0%st

Mem: 99060552k total, 42148560k used, 56911992k free, 1219612k buffers
Swap: 25165816k total, Ok used, 25165816k free, 8583880k cached

PID USER PR NI VIRT RES SHR S %$CPU $MEM TIME+ COMMAND
76001 oracle 20 0 739m 68m 32m R 81.8 0.1 8:32.61
/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext la.prm
76016 oracle 20 0 739m 68m 32m R 48.8 0.1 5:03.39
/goldengate/latest/extract PARAMFILE /goldengate/latest/dirprm/ext la.prm

I/O Data

Gathering /O data using operating system tools such as iostat or OSWatcher is crucial to understanding where
the bottlenecks on I/O originate. For the source environment, you need to consider both reads from the redo log files

29 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



and concurrent reads and writes to and from the trail files by Extract and Data Pump processes. On the target
environment, the concurrent access to the trail files by Data Pump and one or more Replicat processes must be
monitored. As with normal database tuning, the database I/O should be monitored, and these results can be used
along with AWR and ASH to identify and resolve bottlenecks.

For information about OSWatcher, refer to the OSWatcher Analyzer User’s Guide at

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=461053.1&h=Y

Oracle Streams Performance Advisor (Integrated Extract and Integrated Replicat)

The Oracle Streams Performance Advisor (SPADV) enables monitoring of the integrated GoldenGate server
processes which are used by integrated Extract and integrated Replicat, and provides information about how these
processes are performing.

SPADV statistics are collected and analyzed using the UTL_SPADV package.
To install SPADV:

1. Grant the following privileges to a designated Oracle GoldenGate administrator database user if it hasn’t been
done already.

SQL> exec DBMS GOLDENGATE AUTH.GRANT ADMIN PRIVILEGE ('<db user name>');

2. Connect to the database with the user name that was granted permissions in Step 1.

3. Run the utlspadv.sql script. For example:
SQL> Q@SORACLE HOME/rdbms/admin/utlspadv.sql

Oracle recommends that you gather statistics for a 30-60 minute time period during which you are troubleshooting
performance. It is also recommended that you gather statistics during a 30-60 minute time period where
performance is good, to serve as a baseline comparison.

To gather statistics every 15 seconds, run the following SQL*Plus command as the Oracle GoldenGate
administrator.

SQL> exec UTL_SPADV.START MONITORING (interval=>15);

To stop statistics gathering, run the following command.

SQL> exec UTL_SPADV.STOP_MONITORING;

Run the following commands to determine if the monitoring job is currently running.

SET SERVEROUTPUT ON

DECLARE
is mon BOOLEAN;
BEGIN
is mon := UTL SPADV.IS MONITORING (

job name => 'STREAMS$ MONITORING JOB',
client name => NULL);
IF is mon=TRUE THEN
DBMS OUTPUT.PUT LINE ('The monitoring job is running.');
ELSE

30 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=461053.1&h=Y

DBMS OUTPUT.PUT LINE('No monitoring job was found.');
END IF;
END;
/

To create a text report of SPADV statistics after monitoring for a period of time, from SQL*Plus as the Oracle
GoldenGate administrator, run the following:
spool /tmp/spadv.txt
begin
utl spadv.show stats (path stat table=>'STREAMSS PA SHOW PATH STAT',
bgn run id=> 1,
end run id=> 9999,
show legend=> TRUE) ;
end;

After the reports have been generated, Oracle recommends purging the SPADV statistics using the following
command:

SQL> exec UTL SPADV.STOP MONITORING (PURGE=>TRUE) ;

Appendix C contains a shell script example that displays SPADV statistics in real time so that you can monitor the
GoldenGate processes during the monitoring period.

The following example shows the output for integrated Extract.

PATH 2 RUN ID 59 RUN TIME 2013-MAR-21 15:20:34 CCA Y

|<C> OGG$CAP EXT 1A 129882 129851 57 LMR 0% 73.3% 26.7% "CPU + Wait for CPU"
LMP (1) 0% 0% 100% "CPU + Wait for CPU" LMB 80% 0% 20% "CPU + Wait for CPU" CAP
46.7% 0% 53.3% "CPU + Wait for CPU" |<Q> "STREAMSADMIN"."OGGS$Q EXT 1A" 129844
0.01 0 |<A> OGGSEXT 1A 0.01 0.01 0 |<B> NO BOTTLENECK IDENTIFIED

The general format for each process is:

<process name> <idle %> <flow control %> <top event %> <top event name>

The preceding integrated Extract example shows the following statistics:

M

LogMiner captured an average of 128,882 messages per second.

M

The LogMiner latency is currently 57 seconds.

M

The LogMiner reader (LMR) server process spent:
» 0% of its time idle
» 73.3% of its time in flow control (waiting for the next process in the chain (LMP))
» 26.7% of its time consuming or waiting for CPU

M

The LogMiner preparer (LMP) server process spent:
» 0% of its time idle
» 0% of its time in flow control
» 100% of its time consuming or waiting for CPU

M

The LogMiner builder (LMB) server process spent:
» 80% of its time idle

» 0% of its time in flow control

31 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



» 20% of its time consuming or waiting for CPU
» The capture process (CAP) session spent:

» 46.7% of its time idle

» 0% of its time in flow control

» 53.3% of its time consuming or waiting for CPU

The SPADV statistics clearly indicate if any of the LogMiner server processes are causing performance bottlenecks.
In the next example, the LogMiner preparer (LMP) process is bottlenecked on CPU.

The output from SPADV for integrated Replicat has a similar format to integrated Extract. The following example
shows the output for integrated Replicat (excerpt using an Oracle Database 12c database).

PATH 2 RUN ID 69 RUN TIME 2014-JUL-15 08:34:57 CCA Y

|[<R> REP 1A 111937 15724041 0 0% 31.3% 50% "CPU + Wait for CPU" [<Q>
"SOESMALL"."OGGQSREP 1A" 111636 0.01 4870 |<A> OGGSREP_ 1A 114395 11729 -1 APR 0%
12.5% 87.5% "CPU + Wait for CPU" APC 56.3% 0% 43.8% "CPU + Wait for CPU" APS
(12) 237.5% 0% 931.3% "CPU + Wait for CPU" |<B> OGGSREP 1A APS 1374 47804 100.%
"CPU + Wait for CPU"

The output shows the following statistics:

» The apply rate at this sample time is 114,395 messages per second by the apply process, OGGSREP_1A,

b

v

The apply latency is shown as -1 which indicates, as does zero, that there is no latency.
» The Replicat process spent:
» 0% of its time idle
» 31.3% of its time in flow control (waiting for another process further along in the chain)
» 50% of its time consuming or waiting for CPU
» The apply reader (APR) process spent:
» 0% of its time idle
» 12.5% of its time in flow control (waiting on another process further along in the chain)
» 87.5% of its time consuming or waiting for CPU
» The apply coordinator (APC) process spent:
» 56.3% of its time idle
» 0% of its time in flow control
» 43.8% of its time consuming or waiting for CPU
» The apply server (APS) processes spent:
» 237.5% of its time idle
» 0% of its time in flow control
» 931.3% of its time consuming or waiting for CPU
» There are twelve APS processes; therefore, 931.1% of twelve processes equates to 77.6% of total time.

P

v

A single APS process is identified as the bottleneck with 100% CPU consumption or time spent waiting for CPU.

The integrated Replicat SPADV clearly shows there is a bottleneck on apply server processes on CPU. To learn
how to resolve such bottlenecks see the methodology described in “Oracle GoldenGate Performance Tuning

Methodology” on page 17.

32 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



Integrated Capture and Integrated Replicat Healthcheck

The integrated capture and integrated Replicat healthcheck is a report that shows the current status of an Oracle
GoldenGate integrated capture or integrated Replicat configuration. The report is divided into three main sections.
» Configuration - reports definitions relevant for Oracle GoldenGate integrated Extract and integrated Replicat.

» Analysis - provides output for the checks done by the healthcheck.

» Statistics - reports statistics for those elements of integrated capture and integrated Replicat that are enabled.
Healthcheck is a statically generated report, so it only reflects the status at one point in time. Oracle recommends

gathering two or three healthcheck reports at several minute intervals to make sure that the components are flowing
correctly.

For instructions about downloading and for more information about using the healthcheck script, refer to MOS Note
1448324.1 at

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1448324.1&h=Y

33 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1448324.1&h=Y

Appendix B — Considerations for Non-Integrated GoldenGate Replicat Processes

If you are not using Oracle GoldenGate integrated Replicat there are some additional considerations that must be
understood.

Use of BATCHSQL

By default, non-integrated Replicat operates in normal mode, where each row change is made one row at a time.
Commits are issued based on the setting of the GROUPTRANSOPS parameter (which defaults to 1000). After
approximately 1000 SQL operations, a COMMIT command is issued. Replicat accumulates operations from source
transactions, in transaction order, and applies them as a group within one transaction on the target database. The
GROUPTRANSOPS parameter sets a minimum value rather than an absolute value to avoid dividing source
transactions. Replicat waits until it receives all operations from the last source transaction in the group before
applying the target transaction.

By enabling BATCHSQL mode, Replicat batches together SQL statements that affect the same table, operation type
(INSERT, UPDATE or DELETE), and column list and applies them together as an array operation. By using array
operations, apply rates generally increase because there is significantly less CPU utilization per row.

The following is an example of an insert-only workload with Replicat in normal mode (taken from an AWR report).

SQL ordered by Executions

Executions o s Elapsed |, cpy saL id sQL Module sQL Text
Processed per Exec Time (s}

‘ 43, DGBBG?‘ 43, DEBBG?‘ 1 uu| 222171 ‘mu ‘ 9rchiiph3462 ‘OGG REF_1A- |INSEF‘.T INTO

OPEN_DATA_SOURCE "SOESMALL™ "ORDER_...

You can see that single row operations are carried out because the value of the Rows per Exec column is 1.00.
In contrast, the following example uses the BATCHSQL parameter with a default OPSPERBATCH value of 1200.

SQL ordered by Executions

Executions e Rows per |  Elapsed |,..p, saL id sQL Module SQL Text
Processed Exec Time [g)

43,003 43,069,020 1,001.54 461.05 (99.9 19rchijpb3462 OGG-REP_1A- INSERT INTO
OPEN_DATA_SOURCE "SOESMALL™ "ORDER_.

The value of the Rows per Exec column has increased to approximately 1000 and there is a 4.8 times reduction in
elapsed time and CPU time for these inserts.

In most cases, Oracle recommends that you leave the setting of the OPSPERBATCH parameter at the default value
of 1000. To enable BATCHSQL for a Replicat, add the BATCHSQL parameter to the Replicat parameter file.

When BATCHSQL is enabled for a non-integrated Replicat, Oracle recommends regularly checking the process
report file and statistics to make sure that few transactions are reverting back to normal mode (non-batched)
because an exception was encountered. When many exceptions occur, apply performance can suffer because of
the rolling back of the batched transaction and reapplying it in normal mode. To determine how many batched
transactions are being aborted, use the following GGSCI command:

GGSCI> send <replicat name> report;

Then, look at the latest information in the Replicat report file located in the dirrpt directory. For example:

34 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



BATCHSQL statistics:
Batch operations: 21322428

Batches: 21294

Batches executed: 21294

Queues: 21294

Batches in error: 8

Normal mode operations: 8397
Immediate flush operations: 0
PK collisions: 14381

UK collisions: 0

FK collisions: 0

In the preceding example, there are 8 transaction batches that encountered an exception, with 14381 primary key
collisions.

The following example Replicat report file shows the reason for the exceptions.

2014-07-15 11:46:14 WARNING OGG-00869 Aborting BATCHSQL transaction. Database
error 60 (OCI Error ORA-00060: deadlock detected while waiting for resource
(status = 60), SQL <UPDATE "SOESMALL"."INVENTORIES" x SET x."QUANTITY ON HAND" =
:a2 WHERE x."PRODUCT ID" = :b0 AND x."WAREHOUSE ID" = :bl>).

2014-07-15 11:46:14 WARNING OGG-01137 BATCHSQL suspended, continuing in normal
mode.

2014-07-15 11:46:14 WARNING OGG-01003 Repositioning to rba 297226345 in seqno 1.
2014-07-15 11:46:14 INFO 0GG-01139 BATCHSQL resumed, recovered from error.

When these exceptions occur they should be investigated and resolved before changing the BATCHSQL
configuration.

When using the BATCHSQL or GROUPTRANSOPS parameters, SQL operations from different transactions are
merged into larger transactions while maintaining transactional order. If the target transactions must match the
source transactions (for example, the number of DMLs per commit), then set GROUPTRANSOPS=1, which may limit
the Replicat performance for small transactions.

The maximum size of each statement batch is controlled by the BATCHSQL OPSPERBATCH parameter. The default
size of 1000 is adequate in most cases, but changing the batch size may result in performance gains. Setting the
batch size too low or too high can result in performance degradation. When changing the BATCHSQL parameter do
so in a controlled manner, so performance with the old and new settings can be accurately compared.

Dividing Workload Between Multiple Replicats

If you are using non-integrated Replicat, it is recommended that you use the Coordinated Replicat feature to divide
work amongst Replicat processes. Coordinated Replicat was introduced with Oracle GoldenGate 12.1.2 release,
providing an easier way to manually partition the workload to apply high volume transactions concurrently. Instead of
creating multiple Replicat processes, each with their own parameter file, listing which objects to apply using RANGE
parameter, a single parameter file is used to create a number of coordinated Replicats. A coordinator thread process
coordinates transactions across Replicats that require coordination, such as DDL and primary key updates with
THREADRANGE partitioning. Such a transaction is executed as one transaction in the target with full synchronization;
it waits until all prior transactions are applied, and all transactions after this barrier transaction must wait until this
barrier transaction is applied.

It is recommended that you use Coordinated Replicat when there are a few tables that are modified with large
transactions such that applying the transactions is causing Replicat slowness.

35 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



For more information about Coordinated Replicat refer to Administering Oracle GoldenGate for Windows and UNIX
at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-
AB54FC7446E67.htm#GWUAD953

Before configuring multiple integrated or non-integrated Replicat processes, it is important to identify the key
characteristics of the data being replicated.

1. Heavily accessed tables (with DML)

When a single Replicat process cannot keep apply latency low enough, Oracle recommends that you evenly
distribute the data being applied across a number of Replicat processes until the latency is near zero or within an
acceptable time. To do this, you must identify the heavily manipulated tables. There are three methods available
to identify such tables:

a. Normally done during the Oracle GoldenGate testing phase before implementation in a production
environment, configure Extract to capture the schema or tables required for replication with the
TESTMAPPINGSPEED parameter. This parameter stops Extract from creating any trail files, but allows you to
see the type and volume of data captured, test the Extract configuration, and determine the overhead cost of
mining the log files on the source database. After Extract has run long enough to capture a suitable amount of
workload, stop Extract to create an Extract report. The report file is created in the dirrpt directory of the
Oracle GoldenGate installation home. The report includes a list of tables with the number of inserts, updates,
and deletes carried out against each table. For example:

From Table PSFT.PS PAY LINE:

# inserts: 750720
# updates: 1501440
# deletes: 0
# discards: 0
From Table PSFT.PS PAY EARNINGS:
# inserts: 2352256
# updates: 4204032
# deletes: 250240
# discards: 0
From Table PSFT.PS PAY OTH EARNS:
# inserts: 1901824
# updates: 1651584
# deletes: 250240
# discards: 0

b. Use the Oracle GoldenGate STATS EXTRACT command to gather table statistics for a currently running
Extract process. While Extract is running, use the following script to retrieve table statistics for the latest 15
minute period:

#!/bin/bash
cd <Oracle GoldenGate Install Home>

./ggsci <<!EOT > /tmp/table stats.out
stats extract ext la, reset
pause 900
stats extract ext la, total, latest
'EQOT

36 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm#GWUAD953
http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm#GWUAD953

The output produced includes table statistics since Extract was started and also since reset was issued 15
minutes before printing the statistics. For example:

Start of Statistics at 2013-02-18 15:41:29.
Output to /u0l/goldengate/latest/dirdat os/aa:
Extracting from SOESMALL.ORDERS to SOESMALL.ORDERS:

*** Total statistics since 2013-02-18 14:08:19 **x*

Total inserts 2411804.00
Total updates 2411803.00
Total deletes 0.00
Total discards 0.00
Total operations 4823607.00
*** Latest statistics since 2013-02-18 15:26:28 ***
Total inserts 224076.00
Total updates 224075.00
Total deletes 0.00
Total discards 0.00
Total operations 448151.00

c. Use the Oracle GoldenGate 1ogdump utility to retrieve the table statistics from one or more trail files. When
one or more trail files have been created, use the following commands to retrieve the table statistics:

% cd <Oracle GoldenGate Install Home>

$ ./logdump

Logdump> count detail <trail file directory>/<trail file name>
Use a wildcard character to retrieve the count from more than one file:

Logdump> count detail <trail file directory>/aa00000*

Example output:

SOESMALL.INVENTORIES Partition 4

Total Data Bytes 781788504
Avg Bytes/Record 42
FieldComp 18614012
After Images 18614012
SOESMALL.ORDERS Partition 4
Total Data Bytes 1140800152
Avg Bytes/Record 98
Insert 5790864
FieldComp 5790863
After Images 11581727
SOESMALL.ORDER ITEMS Partition 4
Total Data Bytes 1439690630
Avg Bytes/Record 70
Insert 20567009
After Images 20567009

For detailed information about using the 1ogdump ultility to determine table DML rates, refer to MOS Note

1301300.1 at

https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1301300.1&h=Y

37 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


https://support.oracle.com/oip/faces/secure/km/DocumentDisplay.jspx?id=1301300.1&h=Y

Use the total number of DML statements for each table to divide the tables among the Replicat processes. This
can be made easier using the Perl code provided in MOS Note 2224542.1 at

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1

The number of Replicat processes to configure is determined by using an iterative process of adding Replicat
processes until the latency reaches an acceptable number without causing 1/0 contention on reading the trail
files, or without causing other database performance issues. Start with a single Replicat process and measure
how it performs. If performance is not acceptable (after using BATCHSQL, if possible), distribute the tables
among two or three Replicat processes or coordinated Replicat threads and retest the performance. Continue
this exercise until a suitable performance level and latency time is reached.

If there are a small number of tables that contain a large percentage of DML which, after dividing into their own
Replicat processes, are still not applying the data fast enough, these tables can be further distributed among
coordinated Replicat threads.

For example, distributing a table between two coordinated Replicat threads would use the following MAP
parameter:

MAP SOESMALL.ORDER ITEMS , TARGET soesmall.ORDER ITEMS, THREADRANGE (1-2);

For more information about using the THREADRANGE parameter to distribute work to coordinated Replicat
threads, refer to Reference for Oracle GoldenGate for Windows and UNIX at

http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-C2356234-3780-48EE-9E7A-
F21DC352638C.htm#GUID-C2356234-3780-48EE-9E7A-F21DC352638C BABIEAFI

2. Referential integrity between tables

To ensure data integrity, parent and child tables with referential integrity relationships should be processed by the
same Replicat process. For tables that are not part of referential integrity constraints (for example, Peoplesoft
Payroll tables), assigning tables among multiple Replicat processes becomes an easier task by evenly distributing
the load among each Replicat process.

3. Handling of DDL statements

To avoid locking conflicts between Replicat processes, it is very important to understand the nature of DDL
statements that occur against replicated objects. You must apply DDL with the same Replicat process that is
applying DML for the table. If not configured this way, the Replicat processes can abort when a DDL statement
times out waiting for another process to finish applying DML to the same table. There are two ways to avoid this
issue:

a. Use coordinated Replicat (for non-integrated Replicat only). Coordinated Replicat is a multithreaded process
that applies transactions in parallel instead of serially. Each thread handles all of the filtering, mapping,
conversion, SQL construction, and error handling for its assigned workload. A coordinator thread coordinates
transactions across threads to account for dependencies, and also ensures that DDL is applied in a
synchronized manner preventing DML from occurring on the same object at the same time. For more
information about coordinated Replicat, refer to Administrating Oracle GoldenGate for Windows and UNIX at

38 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=2224542.1
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-C2356234-3780-48EE-9E7A-F21DC352638C.htm%23GUID-C2356234-3780-48EE-9E7A-F21DC352638C__BABIEAFI
http://docs.oracle.com/goldengate/c1221/gg-winux/GWURF/GUID-C2356234-3780-48EE-9E7A-F21DC352638C.htm%23GUID-C2356234-3780-48EE-9E7A-F21DC352638C__BABIEAFI

http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-
AS4FC7446E67.htm#GWUAD953

b. If you are not using coordinated Replicat, Oracle recommends that you avoid using the @RANGE function to
divide a table among Replicat processes if DDL is also applied to the table. It is not possible to predict if all of
the DML is completed before the DDL is applied. To help alleviate the DDL timeout issue, use the DDL
EXCLUDE or INCLUDE parameters to instruct the Replicat process to which tables DDL can be applied.

For more details about replicating DDL statements, refer to Installing and Configuring Oracle GoldenGate for
Oracle Database at

http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-
C9431E1FF034.htm#GIORA285

39 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES


http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm%23GWUAD953
http://docs.oracle.com/goldengate/c1221/gg-winux/GWUAD/GUID-3388C553-994A-4ECD-95C8-A54FC7446E67.htm%23GWUAD953
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-C9431E1FF034.htm%23GIORA285
http://docs.oracle.com/goldengate/c1221/gg-winux/GIORA/GUID-0A230601-A447-499C-B31F-C9431E1FF034.htm%23GIORA285

Appendix C — Displaying Real-time SPADV Statistics

The following example shell script program displays the Oracle Streams Performance Advisor (SPADV) statistics in
real time, once monitoring has been started.

#!/bin/bash

# Set the Oracle environment variables

export ORACLE SID=GGS1

export ORACLE HOME=/u0l/app/oracle/product/12c
export PATH=$PATH:S$ORACLE HOME/bin

sglplus -s <GG admin user>/<GG admin passwd> <<!EOS
set feedback off serveroutput on

-- First need to show first stat line with the legend:
begin
utl spadv.show stats(path stat table=>'STREAMS\$ PA SHOW PATH STAT',

bgn run id=> -1,
end run id=> -1,
show legend=> TRUE) ;

end;

/

'EOS

sleep 15

-- Now loop through showing results every 15 seconds, until CTRL-C is issued
d=0
while [ $d -1t 1 ];
do
date

sglplus -s streamsadmin/streamsadmin <<!EOS
set feedback off serveroutput on

begin
utl spadv.show stats(path stat table=>'STREAMS\S PA SHOW PATH STAT',
bgn run_ id=> -1,
end run_id=> -1,
show legend=> FALSE) ;
end;

/
!EOS
sleep 15

done

40 | ORACLE GOLDENGATE PERFORMANCE BEST PRACTICES



ORACLE

Oracle Corporation, World Headquarters Worldwide Inquiries
500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Oracle GoldenGate Performance
Best Practices

May 2017

Author: Stephan Haisley

Hardware and Software, Engineered to Work Together

Copyright © 2014, 2017, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and
the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and

are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0517

& ‘ Oracle is committed to developing practices and products that help protect the environment



