

1 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Oracle Database Migration with an Oracle
GoldenGate Hub Configuration
O R A C L E W H I T E P A P E R | A U G U S T 2 0 1 9

2 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Table of Contents

Introduction 5

Configuration Overview 6

Oracle GoldenGate 6

Oracle GoldenGate Hub 7

Target Database Instantiation 10

Naming Conventions Used Throughout This Paper 10

Configuration Pre-Requisites 11

Evaluate Source Database Support for Oracle GoldenGate 11

Source Database Configuration 12
Oracle Net Connectivity 13
Oracle GoldenGate Database Administrator Account 14

Target Database Configuration 15
Create the Target Database 15
Set Database Initialization Parameters 15
Create GoldenGate Administrator Database Account 16
Create the Database Directory Object 16
Create a Database Link to the Source Database (Optional) 16

Oracle GoldenGate Hub Configuration 16

Install Oracle Client Software 17

Install Oracle GoldenGate Software 18

Install NGINX Reverse Proxy Server 18

Configure an Oracle GoldenGate Microservices Deployment 20

Configure NGINX Reverse Proxy 22

Oracle GoldenGate Configuration 24

Create the Source GoldenGate Credentials 24
Preparing the Oracle Net Configuration Files 24
Create GoldenGate Database Credentials 25

Create the Heartbeat Table on the Source Database 26

Prepare the Source Database Schemas for Instantiation 28

Create and Start the GoldenGate Extract Process 29

Create Autostart Tasks 32

Monitor the Source Database for Long Running Transactions 34

Target Database Instantiation 35

3 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Oracle RMAN Duplicate Database 35

Oracle Data Pump Export/Import 36

Complete the Oracle GoldenGate Configuration 36

Create the Target Database GoldenGate Credentials 36

Create the Target Database GoldenGate Checkpoint Table 36

Create Heartbeat Tables on the Target Database 38

Create the Oracle GoldenGate Replicat 38
Creating the Replicat for an RMAN Instantiation 39
Creating the Replicat for a Data Pump Instantiation 40

Assign the Autostart Task to Replicat 40

Monitor GoldenGate Replication 41

Testing the Migrated Database 42

Suspend Replication 42

Create a Guaranteed Restore Point (GRP) 43

Validate the Target Database 43

Flashback the Target Database 44
a. Shut down the database. 44
b. Flashback the database. 44
c. Start the database 44

Drop the Guaranteed Restore Point 44

Resume Replication 44

Switch Over to the Migrated Database 45

Determine Whether GoldenGate Replication Lag is Acceptably Low 45

Stop Transactions From Starting on the Source Database 45

Verify That Extract Has Completed Outstanding Transactions 45

Stop the Extract 46

Wait for Replicat to Apply All Trail File Data 46

Switch Over to the Target Database 46

Removing the GoldenGate Configuration 47

Drop the GoldenGate Processes 47

Remove the Autostart Tasks 47

Drop the Heartbeat Tables on the Target Database 47

Drop the Checkpoint Table 48

Remove the GoldenGate Credentials 48

4 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Appendix A – Example Oracle GoldenGate Deployment Creation Response Files 49

Appendix B – Example Start and Stop Oracle GoldenGate Deployment Scripts 52

Starting the Oracle GoldenGate Deployments 52

Stopping the Oracle GoldenGate Deployments 52

5 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Introduction

This Oracle GoldeGate Maximum Availability Architecture (MAA) migration solution provides step-by-

step instructions to set up and migrate any 11g Release 2 and later Oracle database, from any system

platform (e.g. AIX, HP UX, Linux), from a single tenant to a multitenant architecture, or from a

database not using Transparent Data Encryption (TDE) to a TDE database. These same MAA best

practices are generally applicable while migrating between on-premises or cloud source and target

database systems, although cloud-specific details will be outlined in a separate paper.

This MAA solution uses a new Oracle GoldenGate Hub solution that delivers the following advantages:

 Minimal to zero downtime

 Cross database versions support

 Cross platform support

 Single tenant or multitenant agnostic

 Reduced Oracle GoldenGate resource impact on the source and target database systems

 The Oracle GoldenGate Hub architecture can be used for multiple Oracle Database migrations.

The diagram below shows the high-level migration flow presented in this white paper:

6 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Configuration Overview

This section introduces the Oracle GoldenGate configuration with Oracle GoldenGate Microservices Architecture.

Oracle GoldenGate

Oracle GoldenGate provides real-time, log-based change data capture and delivery between homogenous and

heterogeneous systems. This technology enables you to construct a cost-effective and low-impact real-time data

integration and continuous availability solution.

Oracle GoldenGate replicates data from committed transactions with transaction integrity and minimal overhead on

your existing infrastructure. The architecture supports multiple data replication topologies such as one-to-many,

many-to-many, cascading, and bidirectional. Its wide variety of use cases includes real-time business intelligence;

query offloading; zero-downtime upgrades and migrations; and active-active databases for data distribution, data

synchronization, and high availability.

Oracle GoldenGate Microservices Architecture was introduced in Oracle GoldenGate release 12.3, as a new

administration architecture that provides REST-enabled services as part of the Oracle GoldenGate environment.

The REST-enabled services provide remote configuration, administration, and monitoring through HTML5 web

pages, command-line interfaces, and APIs. Figure 1 shows the Oracle GoldenGate Microservices Architecture.

7 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Figure 1: Oracle GoldenGate Microservices Architecture

More information about Oracle GoldenGate Microservices Architecture can be found in the Oracle GoldenGate

documentation at:

https://docs.oracle.com/en/middleware/goldengate/core/19.1/using/getting-started-oracle-goldengate.html#GUID-

61088509-F951-4737-AE06-29DAEAD01C0C

Oracle GoldenGate Hub

The Oracle GoldenGate Hub is an architectural concept that places the Oracle GoldenGate software on a different

host than the databases being operated against.

The hub must be located close in network proximity to the target database, leading to two possible architectures:

https://docs.oracle.com/en/middleware/goldengate/core/19.1/using/getting-started-oracle-goldengate.html#GUID-61088509-F951-4737-AE06-29DAEAD01C0C
https://docs.oracle.com/en/middleware/goldengate/core/19.1/using/getting-started-oracle-goldengate.html#GUID-61088509-F951-4737-AE06-29DAEAD01C0C

8 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

1. Separate GoldenGate Hub server – The GoldenGate software and processes run on a separate server,

shown in figure 2. Oracle client software for both the source and target database versions are required on the

GoldenGate hub. One advantage of this architecture is that it isolates a lot of the GoldenGate resource usage

off of the source and target database servers. Another advantage of the GoldenGate Hub server is that it can

be used for multiple database migrations. The disadvantage is that an additional server needs allocating with

sufficient memory, CPU, I/O and network bandwidth to handle all of the GoldenGate traffic.

Figure 2: Oracle GoldenGate Hub architecture running on a dedicated server

2. Oracle GoldenGate Hub co-located on the target database server – The GoldenGate software and

processes run on the target database host, shown in figure 3. This topology is recommended in cases where

the database is migrated to a much more powerful server or server with ample resources (CPU, memory, and

I/O) that can be used by Oracle GoldenGate. Additional Oracle client software is required to match the source

9 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

database version, if different to the target database version. The advantage to this architecture is that it

removes much of the GoldenGate resource usage from the source database host and does not require an

additional dedicated server. This is appropriate solution if migrating to a brand new server with ample

resources. The disadvantage is that the target database host must have enough resources for GoldenGate and

the target database.

Figure 3: Oracle GoldenGate Hub running on the target database server

Oracle GoldenGate release 19c or later is required when following the instructions provided in this paper. The latest

version of Oracle GoldenGate can be downloaded from:

http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html

http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html

10 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Target Database Instantiation

Before replicating data between the source and target databases with Oracle GoldenGate, both databases must

contain the replicated objects in a consistent state such that they won’t cause data conflicts when Replicat applies

changes. The method of target database instantiation is driven by the source and target Oracle Database version,

the endianness of operating system of the database server, and any major database structure differences, such as

migrating to an encrypted or multitenant database.

The following instantiation methods are discussed in this paper:

1. RMAN duplicate database – The source database can be duplicated by RMAN when the source and

destination database versions of Oracle are the same, along with the same platform endian format. This

instantiation method is the fastest way to instantiate the target database.

2. Data Pump export/import – The source database is exported using Oracle Data Pump and imported into

an empty target database. This instantiation method is required when the source and destination Oracle

database versions are different, the platform endian format is different, or there is a database structure

change, such as migrating from single tenant to multitenant architecture or to an encrypted database.

In both of the above cases the source database is online throughout the instantiation.

During the instantiation window it is recommended that you avoid certain database operations to provide the most

optimal environment for fast database replication. The following should be avoiding during the database migration:

1. Data Definition Language (DDL) – When DDL is being replicated the Replicat will serialize data to

ensure that there are no locking issues between DML and DDL on the same objects.

2. Large batch DML – Running large batch operations, like a single transaction that affects multi-millions of

rows, can slow down replication rates.

The two different instantiation methods are described in detail in the Target Database Instantiation section.

Naming Conventions Used Throughout This Paper

Throughout this paper, examples are provided for REST API endpoints to manage the Oracle GoldenGate

configuration using two deployments (SOURCE and TARGET). The REST API is used so that the commands can

easily be integrated into an automated database migration script. The script can be run locally or remotely from any

server with access to the GoldenGate Hub with curl and python installed. Alternatively, you can use Admin Client

commands to manage the GoldenGate Hub. Admin Client is a standalone command-line interface used to create

and manage GoldenGate replication. Refer to the Command Line Interface Reference for Oracle GoldenGate for

Admin Client commands:

https://docs.oracle.com/en/middleware/goldengate/core/19.1/gclir/index.html

Here is an example of key arguments given in the GoldenGate REST APIs used throughout this paper:

$ curl -s –K access.cfg https://<GG Hub>/<Deployment

Name>/adminsrvr/services/v2/credentials/goldengate -XGET | python -m json.tool

access.cfg: To prevent the GoldenGate administrator account name and password from being exposed on the

command line, it is recommended that you include the user name and password in a configuration file, which is

read by curl.

https://docs.oracle.com/en/middleware/goldengate/core/19.1/gclir/index.html

11 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Example:

user = "oggadmin:password"

 GG Hub: The hostname or IP address of the GoldenGate Hub server. For example, gghub-server.

 Deployment Name: This is the name of the Oracle GoldenGate deployment. For example, SOURCE or TARGET.

Example:

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/credentials/goldengate -XGET | python -m

json.tool

The example Extract name used in this paper is EXT1 and the Replicat is called REP1.

The REST calls can be made from either the Oracle GoldenGate Hub, or any machine that can access the

GoldenGate hub through the HTTPS protocol.

Configuration Pre-Requisites

Evaluate Source Database Support for Oracle GoldenGate

Oracle GoldenGate has a number of requirements of the source database, detailed below.

 Database patch requirements

It is a best practice to apply the latest bundle patch and PSU (Patch Set Update) on both the source and target

databases. The full recommended patch list can be found in My Oracle Support note 2193391.1, which covers

database versions 11.2.0.4 onwards.

It is recommended that you also apply the patch for bug 28849751 to the source database if network round trip

latency between the source database and GoldenGate Hub is greater than 8ms, and if the latest database bundle

patch or PS/CPU (Critical Patch Update) does not include it.

 Data type support

On the source database use the dictionary view DBA_GOLDENGATE_SUPPORT_MODE to determine if there are any

objects that are not fully supported for extraction by Oracle GoldenGate due to data type replication limitations.

SQL> SELECT owner, object_name FROM DBA_GOLDENGATE_SUPPORT_MODE

WHERE support_mode NOT IN ('FULL',’ID_KEY’);

Any tables that are listed in the above query must be excluded from capture using the GoldenGate Extract

parameter TABLEEXCLUDE owner.object_name. These objects must be manually copied to the target database

at the end of the database migration process.

Refer to the Oracle GoldenGate documentation for a list of unsupported data types for integrated Extract:

https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/1-understanding-whats-

supported.html#GUID-110CD372-2F7E-4262-B8D2-DC0A80422806

https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/1-understanding-whats-supported.html#GUID-110CD372-2F7E-4262-B8D2-DC0A80422806
https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/1-understanding-whats-supported.html#GUID-110CD372-2F7E-4262-B8D2-DC0A80422806

12 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Find more details about the GoldenGate TABLEEXCLUDE parameter at:

https://docs.oracle.com/en/middleware/goldengate/core/19.1/reference/index.html

3. Row uniqueness

Oracle GoldenGate requires a unique row identifier on the source and target tables to locate the correct target rows

for replicated updates and deletes.

This is normally taken care of with primary key or unique key indexes. If there are tables identified that do not have

any such keys, GoldenGate must construct a pseudo key that contains all of the allowable columns in the table,

excluding virtual columns, UDTs, function-based columns, extended (32K) VARCHAR2/NVARCHAR2 columns, and

any columns that are explicitly excluded from the Oracle GoldenGate configuration by an Oracle GoldenGate user.

If the source database is version 12g Release 2 or later, use the data dictionary view

DBA_GOLDENGATE_NOT_UNIQUE to identify all of the tables that do not have a primary key or non-null unique

columns.

You can define a substitute key if the table has columns that always contain unique values. You define this

substitute key by including a KEYCOLS clause within the Extract TABLE parameter and the Replicat MAP parameter.

The specified key will override any existing primary or unique key that Oracle GoldenGate finds.

Refer to the Oracle GoldenGate documentation for more details about ensuring row uniqueness in source tables.

https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/additional-oracle-goldengate-configuration-

considerations.html#GUID-644099C5-8950-496C-8592-446FB1566AFD

Source Database Configuration

The source database prerequisites are described in the MAA white paper “Oracle GoldenGate Performance Best

Practices” at https://www.oracle.com/technetwork/database/availability/maa-gg-performance-1969630.pdf under

"Configuring the Source Database” section. The key prerequisites are:

 Enable ARCHIVELOG mode for the database.

 Enable database force logging to ensure that all changes are found in the redo by the Oracle GoldenGate

Extract process.

 Enable database minimal supplemental logging. Additional schema level supplemental logging for

replicated objects also required.

 Configure the streams pool with the initialization parameter STREAMS_POOL_SIZE.

 Enable GoldenGate replication by enabling the initialization parameter

ENABLE_GOLDENGATE_REPLICATION.

 Install the UTL_SPADV package for integrated Extract performance analysis.

https://docs.oracle.com/en/middleware/goldengate/core/19.1/reference/index.html
https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/additional-oracle-goldengate-configuration-considerations.html#GUID-644099C5-8950-496C-8592-446FB1566AFD
https://docs.oracle.com/en/middleware/goldengate/core/19.1/oracle-db/additional-oracle-goldengate-configuration-considerations.html#GUID-644099C5-8950-496C-8592-446FB1566AFD
https://www.oracle.com/technetwork/database/availability/maa-gg-performance-1969630.pdf

13 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Additionally, there are two more items that need configuring:

Oracle Net Connectivity

Oracle Net connectivity should be optimized to provide the best performance for the remote GoldenGate Extract

running on the hub. This can be done by creating a separate Oracle Net Listener on the source database host,

which also serves not to interfere with the current production listener service.

It is recommended that you set the source database listener to use a higher SDU size due to performance

improvements with a remote GoldenGate Extract. Please note that even though the listener is setting the maximum

possible SDU size, the smallest size will be used if requested by the client. For example, if the listener sets SDU to

2MB but the client requests the default 8KB SDU, the connection to the database will use an 8KB SDU size. The

maximum value for the SDU size for Oracle Database 11g Release 2 is 64KB (65536 bytes), and for later database

releases the maximum value is 2MB (2097152 bytes).

It is recommended that you use Oracle Net or Secure Sockets Layer (SSL) encryption for connections to the source

database. Refer to the Oracle Database Security Guide for more information about SSL with Oracle Net:

https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-secure-sockets-layer-

authentication.html#GUID-6AD89576-526F-4D6B-A539-ADF4B840819F

Create a separate listener for the sole purpose of the database migration. Creating a separate TNS_ADMIN directory

on the source database host ensures separation between the current and newly configured migration listener. This

new TNS_ADMIN directory will contain our sqlnet.ora and listener.ora parameter files. The following

example sqlnet.ora and listener.ora files are configured with SSL and an increased SDU size for Oracle

Database 12g Release 1 and later:

sqlnet.ora

SQLNET.IGNORE_ANO_ENCRYPTION_FOR_TCPS = TRUE

SQLNET.WALLET_OVERRIDE = FALSE

SQLNET.EXPIRE_TIME = 10

WALLET_LOCATION =

(SOURCE=(METHOD=FILE)(METHOD_DATA=(DIRECTORY=/u01/oracle/tcps_wallets)))

SSL_VERSION = 1.2

Parameters required for Net encryption if not using SSL Authentication, replacing

the above parameters:

SQLNET.ENCRYPTION_SERVER = accepted

SQLNET.ENCRYPTION_TYPES_SERVER= (AES256)

DEFAULT_SDU_SIZE = 2097152

listener.ora

Migration =

 (DESCRIPTION_LIST =

 (DESCRIPTION =

 (SDU = 2097152)

 (ADDRESS = (PROTOCOL = TCPS)(HOST = <source database host>)(PORT = 2484))

)

)

https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-secure-sockets-layer-authentication.html#GUID-6AD89576-526F-4D6B-A539-ADF4B840819F
https://docs.oracle.com/en/database/oracle/oracle-database/19/dbseg/configuring-secure-sockets-layer-authentication.html#GUID-6AD89576-526F-4D6B-A539-ADF4B840819F

14 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

SID_LIST_Migration = (SID_LIST = (SID_DESC = (SDU = 2097152) (SID_NAME =

<ORACLE_SID>) (ORACLE_HOME = <ORACLE_HOME>)))

If the source database is Oracle RAC, configure the migration listener on all cluster nodes running instances for the

database. This way, if one instance goes down during the migration, the service can migrate to a surviving instance.

Configure the SSL wallet on all Oracle RAC nodes.

To start/stop/status the migration listener, make sure the following environment variables are set and then issue the

listed commands:

export ORACLE_HOME=<oracle home directory>

export PATH=$PATH:$ORACLE_HOME/bin

export TNS_ADMIN=<TNS admin directory>

To start the listener:

$ lsnrctl start Migration

To stop the listener:

$ lsnrctl stop Migration

To get the current status of the listener:

$ lsnrctl status Migration

Oracle GoldenGate Database Administrator Account

If the source database is currently part of a GoldenGate configuration the GoldenGate administrator account may

already exist. If the user already exists, you need to confirm the permissions are correctly granted, and if not grant

them.

If no GoldenGate administrator user exists, the user must be created, and the recommended username is GGADMIN

for single tenant and PDBs, and C##GGADMIN for a CDB database.

Verify the Existence of an Oracle GoldenGate Administrator Account

If you are using Oracle Multitenant, also check for all PDBs, using a statement similar to the following example:

SQL> SELECT name, username FROM cdb_goldengate_privileges a, v$pdbs b

WHERE a.con_id = b.con_id UNION SELECT decode(a.con_id,1,'CDB ROOT'), username

FROM cdb_goldengate_privileges a, v$pdbs b WHERE a.con_id=1;

For a single tenant database use the following example:

SQL> SELECT username FROM dba_goldengate_privileges;

These queries should return no rows if GoldenGate has never been configured on the database.

If a GoldenGate administrator user already exists, it should be used for the database migration GoldenGate

configuration. Make sure the permissions listed below are granted to the current GoldenGate administrator account.

Throughout this white paper the database GoldenGate administrator account will always be named GGADMIN.

Use the following example to create a new GoldenGate administrator account.

15 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

NOTE: If the source database is a PDB, this account should be created on ALL the PDB's we are intending to

replicate.

SQL> create user ggadmin identified by <password> default tablespace users temporary

tablespace temp;

SQL> grant connect, resource to ggadmin;

SQL> grant select any dictionary to ggadmin;

SQL> grant create view to ggadmin;

SQL> grant execute on dbms_lock to ggadmin;

SQL> exec dbms_goldengate_auth.GRANT_ADMIN_PRIVILEGE('ggadmin');

If the source database is a PDB, a separate account must be created in the CDB.

SQL> create user c##ggadmin identified by <password> default tablespace users

temporary tablespace temp;

SQL> grant connect, resource to c##ggadmin;

SQL> grant select any dictionary to ggadmin;

SQL> grant create view to c##ggadmin;

SQL> grant execute on dbms_lock to c##ggadmin;

SQL> exec dbms_goldengate_auth.GRANT_ADMIN_PRIVILEGE('c##ggadmin',container=>'all');

NOTE: If you are only interested in replicating data from a single PDB, replace 'all' with the PDB name.

Target Database Configuration

If the target database will be instantiated using Oracle Data Pump Export/Import the following pre-requisite steps

must be completed.

Create the Target Database

The empty target database can be created using scripts or the Oracle Database Configuration Assistant (DBCA).

Be sure to size the system tablespace, undo tablespace, temporary tablespaces, and the online redo logs at least as

large as the source database.

If the target database will use encryption, the encrypted tablespaces should be created at this time.

Set Database Initialization Parameters

To allow GoldenGate Replicat to apply changes to the target database, the initialization parameter

ENABLE_GOLDENGATE_REPLICATION must be set, as shown here.

SQL> ALTER SYSTEM SET enable_goldengate_replication=TRUE scope=both;

If the target database is a PDB, this parameter must be set in the CDB.

16 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Create GoldenGate Administrator Database Account

The GoldenGate administrator database account must be created in the target database. If the target database is a

PDB, create the administrator account in the PDB into which the source database will be migrated.

Create the GoldenGate administrator account with the following commands.

SQL> create user ggadmin identified by <password> default tablespace users temporary

tablespace temp;

SQL> grant connect, resource, dba to ggadmin;

SQL> grant select any dictionary to ggadmin;

SQL> grant create view to ggadmin;

SQL> grant execute on dbms_lock to ggadmin;

SQL> exec dbms_goldengate_auth.GRANT_ADMIN_PRIVILEGE('ggadmin');

NOTE: The DBA role is required for DDL and Sequence support. If you are not replicating DDL or Sequences, then

the DBA role is not required.

Create the Database Directory Object

The directory object is required for the Oracle Data Pump import into the target database, and it is used for storing

the import logfile and the export dumpfile being imported. If you are using an Oracle Data Pump network import, an

export dumpfile is not created.

The following example command creates the directory object (as the SYS or SYSTEM user):

SQL> CREATE OR REPLACE DIRECTORY dpump AS '/u01/oracle/datapump';

Create a Database Link to the Source Database (Optional)

If you are using an Oracle Data Pump network import for target database instantiation, you must first create a

database link from the target to the source database, as shown in the following example. The link must be created

by the target SYS or SYSTEM user.

SQL> create database link gg18.us.oracle.com connect to system identified by password

using 'gg18';

NOTE: Make sure a TNS entry has been added to the target database server tnsnames.ora file for the source

database.

Oracle GoldenGate Hub Configuration

The GoldenGate Hub requires three types of software installation and configuration:

 Oracle Client Software to match source and target Oracle database versions

 Oracle GoldenGate software to match source and target Oracle database versions

 NGINX reverse proxy server used by the Oracle GoldenGate Microservices reverse proxy

17 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

The following sections provide details about the required software installations.

Install Oracle Client Software

Oracle GoldenGate requires libraries that are installed as part of the Oracle Client Runtime installation. The client

software version installed must be the same release number as the database that GoldenGate will be connected to.

For example, if the source is Oracle Database 12c Release 2, and the target is Oracle Database 18c, two different

client software installations are required. One for Oracle Database 12c and another for Oracle Database 18c. If both

source and target database releases are the same, a single Oracle client software installation is required.

NOTE: Do not install the Oracle instant client software because it does not contain all of the required libraries.

The Oracle client software can be downloaded from https://edelivery.oracle.com. On Oracle Software Delivery Cloud

select the Release category and search for ”Oracle Database Client”.

When you are installing the software, select to install the Oracle Client Runtime software, as shown in the example

below.

Figure 4: Oracle Client Software Installation

https://edelivery.oracle.com/

18 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Remember to install Oracle client software that matches both the source and target database releases into separate

ORACLE_HOME directories.

Install Oracle GoldenGate Software

You must install the Oracle GoldenGate software release that supports the source and target Oracle Database

releases. The Oracle GoldenGate software compatibility matrix can be found at

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Download the latest Oracle GoldenGate software from https://edelivery.oracle.com. Select the Release category and

search for ”Oracle GoldenGate”. It is recommended that you install the latest available release of Oracle

GoldenGate, which is currently 19c Release 1. Using Oracle GoldenGate 19c Release 1 allows the cross endian

extract where the operating system running GoldenGate Extract is a different endianness from the source database

platform.

If the source and target database releases are different, make sure you install the Oracle GoldenGate software

twice, once for each database release. Figure 5 below shows the software installer option for the database releases.

Figure 5. Select the Oracle GoldenGate release for your Oracle Database version

Remember to Install the Oracle GoldenGate software into separate directories.

Install NGINX Reverse Proxy Server

The Oracle GoldenGate reverse proxy feature allows a single point of contact for all of the GoldenGate

microservices associated with a GoldenGate deployment. Without reverse proxy, the GoldenGate deployment

microservices are contacted using a URL consisting of a hostname or IP address and separate port numbers, one

for each of the services. For example, to contact the Service Manager you may use

https://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
https://edelivery.oracle.com/

19 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

http://gghub.example.com:9100, the Administration Server is http://gghub.example.com:9101, the

administration server of deployment #2 may be https://gghub.example.com:9111, and so on.

With reverse proxy, port numbers are not required to connect to the microservices, as they are replaced with the

deployment name. Using the previous example, to connect to the Service Manager you use the URL

https://gghub.example.com, the Admin Server of deployment #1 (named Source) would use

https://gghub.example.com/Source/adminsrvr, and the administration server of deployment #2 (named

Target) would be https://gghub.example.com/Target/adminsrvr.

The Oracle GoldenGate reverse proxy is recommended to ensure easy access to microservices and provide

enhanced security and manageability.

The Oracle GoldenGate reverse proxy feature uses NGINX-based reverse proxy. The following instructions describe

how to configure the reverse proxy.

1. Check that NGINX is not already installed (as root).

$ sudo rpm -qa |grep nginx

If not installed, nothing is returned.

If NGINX is installed, the output is similar to the following.

nginx-mod-http-xslt-filter-1.12.2-2.el7.x86_64

nginx-mod-http-image-filter-1.12.2-2.el7.x86_64

nginx-filesystem-1.12.2-2.el7.noarch

nginx-mod-mail-1.12.2-2.el7.x86_64

nginx-mod-http-perl-1.12.2-2.el7.x86_64

nginx-1.12.2-2.el7.x86_64

nginx-all-modules-1.12.2-2.el7.noarch

nginx-mod-http-geoip-1.12.2-2.el7.x86_64

nginx-mod-stream-1.12.2-2.el7.x86_64

2. If NGINX is not already installed, install it. The following instructions assume the YUM (Yellowdog Updated

Modified) is installed and configured for easier package installation.

$ sudo yum install epel-release

$ sudo yum update

$ sudo yum install nginx

3. Start NGINX.

$ sudo nginx

4. Verify that NGINX is running.

$ curl -I 127.0.0.1

HTTP/1.1 200 OK

Server: nginx/1.12.2

20 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Date: Wed, 4 Apr 2019 21:48:43 GMT

Content-Type: text/html

Content-Length: 3700

Last-Modified: Wed, 4 Apr 2019 05:06:50 GMT

Connection: keep-alive

ETag: "5abdc5ea-e74"

Accept-Ranges: bytes

Complete documentation for NGINX installation can be found at https://docs.nginx.com/nginx/admin-guide/installing-

nginx/installing-nginx-open-source/.

Configure an Oracle GoldenGate Microservices Deployment

A separate GoldenGate deployment is required for each database release that is being operated against, similar to

the Oracle client software and GoldenGate software installations. If both the source and target databases are the

same release, only a single deployment is required.

Each deployment is created with an Administration Server and (optionally) Performance Metrics Server. There is no

need to create a Distribution or Receiver Server due to the fact that the trail files are stored on the same server as

the Replicat process.

A single Oracle GoldenGate Service Manager is created by the first deployment creation. Subsequent deployments

are created using the existing Service Manager.

There are two ways to create an Oracle GoldenGate deployment:

1. Using the Oracle GoldenGate Configuration Assistant (oggca.sh) – a graphical tool for deployment

creation

2. Using a response file in silent mode, containing all of the deployment parameter values

Both methods of deployment produce the same result, but when you create multiple deployments it is easier to use

option #2 with a response file. Appendix A contains an example response file with parameter changes needed for

creating two deployments, one of which is for the different source and target database releases, using Oracle

GoldenGate 19c. There are no default response files contained in the Oracle GoldenGate software installation,

because the initial deployment must be created using oggca.sh. The screenshot below in Figure 6 shows where a

response file is created in oggca.sh.

https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/
https://docs.nginx.com/nginx/admin-guide/installing-nginx/installing-nginx-open-source/

21 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Figure 6: Creating a deployment response file

After using the example response file in Appendix A to set the correct parameters, create the initial deployment

using the following command.

$ cd $GG_HOME/bin

$./oggca.sh -silent -responseFile /u01/oracle/target_deployment.rsp

When complete the following message will be displayed:

Linux, x64, 64bit (optimized) on Mar 28 2019 14:38:11

Operating system character set identified as UTF-8.

Stopping...STOPPED.

Successfully Setup Software.

If the source and target databases are different Oracle releases, for example 12g Release 2 and 19c, an additional

deployment must be created.

Repeat the deployment of for second Oracle GoldenGate installation, making sure you set the parameters differently

from the first deployment, especially the port numbers and deployment name. The second deployment does not

create a new service manager, instead using the one already created by the first deployment. Refer to Appendix A

for an example response file for creating the second deployment.

NOTE: Make sure that you use the response file template for the Oracle GoldenGate software version that was

installed, because the parameter names and number of parameters may vary per release.

22 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

After each deployment is created, the deployment is automatically started. Refer to Appendix B for example scripts

to start and stop the deployments.

Throughout this white paper, two GoldenGate deployments will be referenced, named SOURCE and TARGET.

Configure NGINX Reverse Proxy

Because a single GoldenGate Service Manager is in use on the GoldenGate Hub, reverse proxy configuration is

simplified by using a single reverse proxy server.

1. Create a server certificate for NGINX.

A certificate is required for NGINX to authenticate client requests using HTTPS. Correct corporate standards should

be followed in creating or obtaining the certificate.

The certificate should be coped to the location /etc/nginx/ogg.pem.

The new certificate will be read by NGINX later when the configuration is reloaded.

2. Set the GoldenGate environment variables and create the NGINX configuration files.

Make sure the OGG_HOME environment variable is set to the home directory for the GoldenGate software running the

Service Manager (the first deployment created above).

export OGG_HOME=/app/oracle/goldengate/target

export PATH=$PATH:$OGG_HOME/bin

$ $OGG_HOME/lib/utl/reverseproxy/ReverseProxySettings –u <username> -P <password> -o

ogg.conf http://localhost:9100

The user name and password specified by the –u and –P parameters should mirror the GoldenGate administrator

(non-database) account specified with the initial deployment creation (in the ADMINISTRATOR_USER and

ADMINISTRATOR_PASSWORD response file parameters). The port number (9100) should also match the Service

Manager port number specified in the initial deployment creation (in the PORT_SERVICEMANAGER response file

parameter).

This command needs to be re-run every time the GoldenGate deployments configurations changes, for example

when adding or removing a deployment.

3. Replace the existing NGINX configuration with the new configuration.

$ sudo mv ogg.conf /etc/nginx/conf.d/

4. Test the new NGINX configuration.

$ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok

nginx: configuration file /etc/nginx/nginx.conf test is successful

5. Reload NGINX and the new configuration.

$ sudo nginx -s reload

23 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

6. Test Oracle GoldenGate Microservices connectivity.

A simple test is to query the health of the deployments using the following command.

$ curl -s –K access.cfg https://localhost/services/v2/config/health -XGET | python -m

json.tool

Sample output:

{

 "$schema": "api:standardResponse",

 "links": [

 {

 "href": "https://localhost/services/v2/config/health",

 "mediaType": "application/json",

 "rel": "canonical"

 },

 {

...

 "response": {

 "$schema": "ogg:health",

 "criticalResources": [

 {

 "deploymentName": "source",

 "healthy": true,

 "name": "adminsrvr",

 "status": "running",

 "type": "service"

 },

 {

 "deploymentName": "target”,

 "healthy": true,

 "name": "adminsrvr",

 "status": "running",

 "type": "service"

 },

],

 "deploymentName": "ServiceManager",

 "healthy": true,

 "serviceName": "ServiceManager",

 "started": "2019-03-28T21:52:42.835Z"

 }

}

24 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Oracle GoldenGate Configuration

This section describes the Oracle GoldenGate configuration steps that must be done on the GoldenGate Hub before

instantiating the target database.

Create the Source GoldenGate Credentials

The GoldenGate database credentials are required to allow GoldenGate processes to connect to the source and

target databases. Using a GoldenGate credential store prevents clear text passwords from being stored in any of the

Extract or Replicat parameter files. Because the target database has not yet been created, only the source database

credential is created in this step. The target database credential is created in a later step.

Preparing the Oracle Net Configuration Files

The database credential uses the Oracle Easy Connect naming method, which does not require the use of a local

tnsnames.ora file, unless the database version is earlier than release 19c and using SSL authentication. In those

cases, Easy Connect naming cannot be used, and tnsnames.ora is required.

The following is an example tnsnames.ora entry for a pre-19c source Oracle RAC database with SSL

authentication.

GGSOURCE =

 (DESCRIPTION=

 (SDU=2097152) # Or set to 65536 for 11.2.0.4 database

 (CONNECT_TIMEOUT=10)(RETRY_COUNT=3)

 (ADDRESS=(PROTOCOL=TCPS)(HOST=<primary db scan address>)(PORT=2484))

 (CONNECT_DATA=(SERVICE_NAME=<db service name>))

)

If the source database is using SSL authentication and the database is an earlier version than 19c, a sqlnet.ora

file with the following parameters is required.

SSL_CLIENT_AUTHENTICATION=TRUE

SSL_SERVER_DN_MATCH=OFF

SQLNET.EXPIRE_TIME = 10

SQLNET.WALLET_OVERRIDE = FALSE

WALLET_LOCATION =

(SOURCE=(METHOD=FILE)(METHOD_DATA=(DIRECTORY="/u01/oracle/network")))

SSL_VERSION = 1.2

DEFAULT_SDU_SIZE=2097152 # Change to 65536 for 11.2.0.4 database

NOTE: Make sure you copy the SSL wallet from the source database environment to the DIRECTORY directory on

the GoldenGate Hub.

Lastly, if the source database uses Oracle Net encryption instead of SSL authentication, and the database is of any

version, a sqlnet.ora file is required with the following parameters.

SQLNET.ENCRYPTION_CLIENT = required

SQLNET.ENCRYPTION_TYPES_CLIENT= (AES256)

25 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

The SDU size is only required for databases earlier than 19c:

DEFAULT_SDU_SIZE=2097152 # Change to 65536 for 11.2.0.4 database

Oracle Database 19c enhanced the Easy Connect naming method, renaming it to Easy Connect Plus. Refer to the

Oracle Net Administrators Guide for more information about the Easy Connect Plus naming method.

https://docs.oracle.com/en/database/oracle/oracle-database/19/netag/configuring-naming-methods.html#GUID-

8C85D289-6AF3-41BC-848B-BF39D32648BA

Create GoldenGate Database Credentials

If you are using a tnsnames.ora file, create the credential to the source database using the TNS alias.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/credentials/goldengate/source -X POST --data

'{"userid":"ggadmin@GGSOURCE", "password":"<password>"}' | python -m json.tool

If you are not using a tnsnames.ora file, but the database version is an earlier release than 19c, create the

credential to the source database using the following Easy Connect naming example (with a SCAN listener).

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/credentials/goldengate/source -X POST --data

'{"userid":"ggadmin@database-host-scan:1521/database_service_name",

"password":"<password>"}' | python -m json.tool

The following example shows credential creation for a 19c source database that is configured with Oracle RAC and

SSL authentication.

curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/credentials/goldengate/source -X POST --data

'{"userid":"ggadmin@tcps://database-host-scan:2484/db_service_name?sdu=2097152&

SSL_SERVER_DN_MATCH=NO&ssl_server_cert_dn=’cn=common_name’&wallet_location=’/u01/orac

le/network’", "password":"<password>"}' | python -m json.tool

The following is an example of creating a credential that is using Oracle Net encryption, enabled in the sqlnet.ora

file, with an Oracle RAC database.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/credentials/goldengate/source -X POST --data

'{"userid":"ggadmin@tcp://database-host-scan:1521/db_service_name?sdu=2097152",

"password":"<password>"}' | python -m json.tool

For a multitenant database, separate credentials must be created for the CDB and the PDB being migrated using

the guidelines above.

To show the GoldenGate credentials created, use the following commands.

https://docs.oracle.com/en/database/oracle/oracle-database/19/netag/configuring-naming-methods.html#GUID-8C85D289-6AF3-41BC-848B-BF39D32648BA
https://docs.oracle.com/en/database/oracle/oracle-database/19/netag/configuring-naming-methods.html#GUID-8C85D289-6AF3-41BC-848B-BF39D32648BA

26 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

1. Show the name of the GoldenGate credentials for a deployment.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/credentials/goldengate -XGET | python -m

json.tool | grep name

"name": "source_cdb"

"name": "source_pdb"

2. Show connection details for the credential.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/credentials/goldengate/source_cdb -XGET | python

-m json.tool

 "response": {

 "$schema": "ogg:credentials",

 "userid": "ggadmin@tcps://database-host-

scan:2484/db_service_name?sdu=2097152&SSL_SERVER_DN_MATCH=NO&ssl_server_cert_dn=’cn=c

ommon_name’&wallet_location=’/u01/oracle/network’"

 }

3. To delete a credential, use the following command.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/credentials/goldengate/source_cdb

-X DELETE | python -m json.tool

Create the Heartbeat Table on the Source Database

The GoldenGate heartbeat table is required to monitor the replication latency between the source and target

databases. If the source database already contains GoldenGate heartbeat objects, you must use them.

1. Check if the heartbeat table already exists, use the source database credentials previously created, as shown

below.

NOTE: For a multitenant database, the heartbeat table must be located in the PDB being replicated. Be sure to

provide the source PDB credential for checking the heartbeat table.

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/connections/goldengate.source_pdb>/tables/heartbeat -XGET |

python -m json.tool

The following example output shows that heartbeat tables are NOT currently configured.

 "messages": [

 {

 "$schema": "ogg:message",

 "code": "OGG-08100",

 "issued": "2019-01-08T23:06:38Z",

27 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

 "severity": "INFO",

 "title": "Heartbeat table ggadmin.gg_heartbeat does not exist.",

 "type": http://docs.oracle.com/goldengate/c1910/gg-

winux/GMESG/oggus.htm#OGG-08100

 },

 {

 "$schema": "ogg:message",

 "code": "OGG-08100",

 "issued": "2019-01-08T23:06:38Z",

 "severity": "INFO",

 "title": "Heartbeat table ggadmin.gg_heartbeat_seed does not exist.",

 "type": http://docs.oracle.com/goldengate/c1910/gg-

winux/GMESG/oggus.htm#OGG-08100

 },

 {

 "$schema": "ogg:message",

 "code": "OGG-08100",

 "issued": "2019-01-08T23:06:38Z",

 "severity": "INFO",

 "title": "Heartbeat table ggadmin.gg_heartbeat_history does not exist.",

 "type": http://docs.oracle.com/goldengate/c1910/gg-

winux/GMESG/oggus.htm#OGG-08100

 }

]

The following example output shows that the GoldenGate heartbeat table already exists:

 "messages": [

 {

 "$schema": "ogg:message",

 "code": "OGG-08100",

 "issued": "2019-01-08T23:31:08Z",

 "severity": "INFO",

 "title": "HEARTBEAT table ggadmin.gg_heartbeat exists.",

 "type": http://docs.oracle.com/goldengate/c1910/gg-

winux/GMESG/oggus.htm#OGG-08100

 },

...

 {

 "$schema": "ogg:message",

 "code": "OGG-08100",

 "issued": "2019-01-08T23:31:08Z",

 "severity": "INFO",

 "title": "HEARTBEAT table ggadmin.gg_heartbeat_seed supplemental logging

ENABLED.",

28 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

 "type": http://docs.oracle.com/goldengate/c1910/gg-

winux/GMESG/oggus.htm#OGG-08100

 },

...

 "response": {

 "$schema": "ogg:tablesHeartbeat",

 "addTrandata": true,

 "frequency": 300,

 "partitioned": false,

 "purgeFrequency": 1,

 "retentionTime": 30,

 "targetOnly": false

 }

If a heartbeat table is already in use, the same tables are used by the new migration GoldenGate Extract.

2. If the existing heartbeat table's frequency is not the default 60 seconds, note the current value and modify it to

60 seconds for the duration of the migration.

NOTE: Remember what the frequency value is BEFORE changing it so you can revert it after the migration is

complete.

Modify the heartbeat update frequency.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/connections/goldengate.source_pdb/tables/heartbea

t -X PATCH --data '{"frequency":60}'| python -m json.tool

3. If the heartbeat tables do not exist, create the heartbeat tables in the source database.

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/connections/goldengate.source_pdb/tables/heartbeat -X POST

--data '{}'| python -m json.tool

The target database heartbeat tables are created after the database is instantiated.

Prepare the Source Database Schemas for Instantiation

You must prepare for replication the source schemas for all of the database schemas that are part of the database

migration and will be replicated.

NOTE: Preparing the database schemas for instantiation MUST be done before the GoldenGate Extract process is

created.

29 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

1. Use the following command to instantiate each database schema.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/connections/goldengate.source_pdb/trandata/schema

-X POST --data '{"operation":"add","schemaName":"soesmall",

"prepareCsnMode":"nowait"}' | python -m json.tool

2. Use the following example commands to check each prepared schema in the source database.

Check single schema with the following command.

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/connections/goldengate.source_pdb/trandata/schema -X POST --

data '{"operation":"info","schemaName":"soesmall"}'| python -m json.tool

Check for all database schemas (from which you can pull out the schemas you are replicating) with the following

command.

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/connections/goldengate.source_pdb/trandata/schema -X POST --

data '{"operation":"info","schemaName":"*"}'| python -m json.tool

Create and Start the GoldenGate Extract Process

The following section describes how to verify the existence of the Extract, add an Extract, start and stop the process,

and delete the Extract.

1. Check for Extract existence (in case it was previously created and not removed).

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/extracts/EXT1 -X GET | python -m json.tool

The following example shows the response if the Extract does NOT exist.

 "messages": [

 {

 "$schema": "ogg:message",

 "code": "OGG-12029",

 "issued": "2019-01-31T04:52:41Z",

 "severity": "INFO",

 "title": "The extract with name 'EXT1' does not exist.",

 "type": http://docs.oracle.com/goldengate/c1910/gg-

winux/GMESG/oggus.htm#OGG-12029

 }

The following example shows the response if the Extract does exist.

 "messages": [],

 "response": {

30 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

 "$schema": "ogg:extract",

 "begin": "now",

 "config": [

 "Extract EXT1",

 "ExtTrail aa",

 "UseridAlias source_cdb DOMAIN goldengate",

 "TRANLOGOPTIONS PERFORMANCEPROFILE HIGH",

 "TRANLOGOPTIONS _readaheadcount 64"

 "REPORTCOUNT EVERY 15 MINUTES, RATE",

 "STATOPTIONS REPORTFETCH",

 "DDL EXCLUDE ALL",

 "Table pdb1.soesmall.*;"

],

 "credentials": {

 "alias": "source_cdb",

 "domain": "goldengate"

 },

 "registration": {

 "containers": [

 "PDB1"

],

 "csn": 51162830

 },

 "source": {

 "tranlogs": "integrated"

 },

 "status": "stopped",

 "targets": [],

 "type": "Integrated"

 }

2. Create the Extract process.

The following are the minimum recommended Extract parameters.

-- Replace with trail file naming standard

EXTTRAIL aa

TRANLOGOPTIONS PERFORMANCEPROFILE HIGH

TRANLOGOPTIONS _readaheadcount 64 -- Required for streaming protocol (bug fix

28849751)

DISCARDFILE APPEND

REPORTCOUNT EVERY 15 MINUTES, RATE

STATOPTIONS REPORTFETCH

31 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

-- It is recommended to prevent DDL on the source database during the database

-- migration:

DDL EXCLUDE ALL

-- Repeat TABLE command for each schema being replicated:

TABLE [container.]<schema_name>.*;

-- Repeat TABLEEXCLUDE command for each table that was highlighted as not supported

-- for GoldenGate replication:

TABLEEXCLUDE [container.]<schema_name>.<tablename>;

If the source database is a PDB, the Extract must connect to the CDB, because it must read the entire database

redo stream. The objects being replicated from the PDB are identified by the TABLE parameter.

Create the Extract using the following command.

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/extracts/EXT1 -X POST --data '{"config":["Extract EXT1",

"ExtTrail aa","UseridAlias source_db DOMAIN goldengate”,"TRANLOGOPTIONS

PERFORMANCEPROFILE HIGH", "TRANLOGOPTIONS _readaheadcount 64", "REPORTCOUNT EVERY 15

MINUTES, RATE","STATOPTIONS REPORTFETCH","DDL EXCLUDE ALL","Table

pdb1.soesmall.*;"],"source":{"tranlogs":"integrated"},"credentials":{"alias":"source_

db","domain":"goldengate"},"begin":"now","targets":[{"name":"aa","sizeMB":500}],"regi

stration":{"containers":["pdb1"]}}'| python -m json.tool

NOTE: The _readaheadcount parameter is required after the patch for bug 28849751 is applied to the source on-

premises database.

NOTE: If you are extracting multiple schemas, use multiple Table <Source PDB>.<Schema Name>.*;

parameters.

Create the Extract for a non-CDB database using the following command.

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/extracts/EXT1 -X POST --data '{"config":["Extract EXT1",

"ExtTrail aa","UseridAlias source_db DOMAIN goldengate","TRANLOGOPTIONS

PERFORMANCEPROFILE HIGH", "TRANLOGOPTIONS _readaheadcount 64", "REPORTCOUNT EVERY 15

MINUTES, RATE","STATOPTIONS REPORTFETCH","DDL EXCLUDE ALL","Table

pdb1.soesmall.*;"],"source":{"tranlogs":"integrated"},"credentials":{"alias":"source_

db","domain":"goldengate"},"begin":"now","targets":[{"name":"aa","sizeMB":500}],"regi

stration":"default"}'| python -m json.tool

3. Confirm the Extract configuration.

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/extracts/EXT1 -X GET | python -m json.tool

4. Check status of the Extract.

The Extract should not be started automatically, so the status should be stopped.

32 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/extracts/EXT1/info/status -X GET | python -m json.tool

The following example shows the expected result with Extract NOT started.

 "messages": [],

 "response": {

 "$schema": "ogg:extractStatus",

 "lag": 0,

 "lastStarted": null,

 "position": "0.0",

 "sinceLagReported": 208,

 "status": "stopped"

 }

5. Start the Extract.

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/commands/execute -X POST --data

'{"name":"start","processName":"EXT1"}' | python -m json.tool

Wait 2 minutes and then check the status of the Extract.

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/extracts/EXT1/info/status -X GET | python -m json.tool

The output after a successful start should be similar to the following.

 "response": {

 "$schema": "ogg:extractStatus",

 "lag": 1,

 "lastStarted": "2019-01-31T19:09:45.524Z",

 "position": "0.51251093",

 "processId": 4702,

 "sinceLagReported": 2,

 "status": "running"

 }

Create Autostart Tasks

Autostart and autorestart profiles are needed to automatically start the GoldenGate processes when the deployment

is started. By default GoldenGate processes are not part of an active profile to automatically start them.

1. Check to see if an autostart profile exisits, and if one does, you can delete it or update it.

Check for the existence of the autostart profile.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/config/types/ogg:managedProcessSettings/values/og

g:managedProcessSettings:MIGRATE01 -XGET | python -m json.tool

33 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

The following example output displays when the profile doesn't exist.

 "messages": [

 {

 "$schema": "ogg:message",

 "code": "OGG-12029",

 "issued": "2019-02-06T17:22:43Z",

 "severity": "INFO",

 "title": "The value with name 'ogg:managedProcessSettings:MIGRATE01' does

not exist.",

 "type": http://docs.oracle.com/goldengate/c1910/gg-

winux/GMESG/oggus.htm#OGG-12029

 }

]

When the profile does exist, you’ll see the following output.

 "response": {

 "autoRestart": {

 "delay": 60,

 "disableOnFailure": true,

 "enabled": true,

 "onSuccess": false,

 "retries": 5,

 "window": 1200

 },

 "autoStart": {

 "delay": 60,

 "enabled": true

 }

 }

If the profile already exists, then it can either be deleted or updated with the settings recommended below.

To delete the profile:

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/config/types/ogg:managedProcessSettings/values/og

g:managedProcessSettings:MIGRATE01 -XDELETE | python -m json.tool

To update the current profile with recommended settings:

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/config/types/ogg:managedProcessSettings/values/og

g:managedProcessSettings:MIGRATE01 -XPUT --data '{"autoStart": {"enabled":

true,"delay": 60},"autoRestart": {"delay": 60,"disableOnFailure": true,"enabled":

true,"onSuccess": false,"retries": 5,"window": 1200}}' | python -m json.tool

34 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

2. Create the following autostart and autorestart profiles for both the source and target deployments.

If the profile doesn't currently exist, or was deleted in the previous step, create the profile.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/config/types/ogg:managedProcessSettings/values/og

g:managedProcessSettings:MIGRATE01 -XPOST --data '{"autoStart": {"enabled":

true,"delay": 60},"autoRestart": {"delay": 60,"disableOnFailure": true,"enabled":

true,"onSuccess": false,"retries": 5,"window": 1200}}' | python -m json.tool

3. Assign the autostart profile to the Extract.

NOTE: You cannot yet assign the profile to the GoldenGate Replicat because it has not yet been created.

$ curl -s –K access.cfg https://gghub-server/SOURCE

/adminsrvr/services/v2/extracts/EXT1 -X PATCH --data '{"managedProcessSettings":

"MIGRATE01"}' | python -m json.tool

Confirm that the Extract is configured with the new profile (partial output shown).

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/extracts/EXT1 -X GET | python -m json.tool

 "managedProcessSettings": "MIGRATE01",

Monitor the Source Database for Long Running Transactions

Before the database can be used to instantiate the target database, it is important that you make sure any

transactions that were active at the time the GoldenGate Extract was created have committed to ensure that

GoldenGate replicates all transactional data.

For example, consider the following timeline.

35 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Transaction #1 commits on the source database at SCN 1100, but it is not captured by Extract because Extract only

processes complete transactions, and the process was created after the transaction had begun. Because SCN 750

is less than 800, this transaction is ignored.

Use the following query on the source database to determine when all of the transactions that were started before

the Extract was created have committed or rolled back, making it safe to start instantiating the target database.

SQL> SELECT capture_name, c.start_scn, t.start_scn

FROM dba_capture c, v$transaction t WHERE t.start_scn < c.start_scn;

When the query returns no rows, it is safe to begin the target database instantiation.

Target Database Instantiation

The following two methods for target database instantiation are provided in this paper.

1. Oracle RMAN duplicate database – The source database can be duplicated by RMAN when the source

and destination database versions of Oracle are the same, along with the same platform endian format.

This instantiation method is the fastest way to instantiate the target database.

2. Data Pump export/import – The source database is exported using Oracle Data Pump and imported into

an empty target database. This instantiation method is required when the source and destination Oracle

database versions are different, the platform endian format is different, or there is a database structure

change, such as migrating from single tenant to multitenant or to an encrypted database.

Oracle RMAN Duplicate Database

Duplicating a source database using RMAN is a much simpler method to copy an entire database if the source and

destination platform endianness is compatible, and the Oracle Database versions are the same. Complete details

about using RMAN to duplicate the source database can be found in the Oracle Backup and Recovery User’s Guide

at

https://docs.oracle.com/en/database/oracle/oracle-database/19/bradv/rman-duplicating-databases.html#GUID-

F31F9FCE-B610-49EB-B9DB-44B9AA4E838F

After the target database has been opened after duplicating it, there are some additional configuration steps that

need to be done.

1. When the target database is opened after duplication, the SCN to which the database was recovered must be

recorded. The SCN is used in a later step to start the Oracle GoldenGate Replicat process. You can get the

SCN from the target database alert.log or from the data dictionary. Both examples are shown below.

Get the SCN from the alert.log entry.

RESETLOGS after incomplete recovery UNTIL CHANGE 681543060 time 05/01/2019

15:05:20

Get the SCN using a data dictionary query.

SQL> select RESETLOGS_CHANGE# - 1 from v$database;

https://docs.oracle.com/en/database/oracle/oracle-database/19/bradv/rman-duplicating-databases.html#GUID-F31F9FCE-B610-49EB-B9DB-44B9AA4E838F
https://docs.oracle.com/en/database/oracle/oracle-database/19/bradv/rman-duplicating-databases.html#GUID-F31F9FCE-B610-49EB-B9DB-44B9AA4E838F

36 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

NOTE: Record this SCN for later use when you start the GoldenGate Replicat process.

2. Confirm that the database initialization parameter, ENABLE_GOLDENGATE_REPLICATION, is set to TRUE. If it

is not, set it using the following command.

SQL> alter system set enable_goldengate_replication=TRUE scope=both;

Oracle Data Pump Export/Import

Oracle Data Pump Export/Import provides an alternative method to instantiate the target database when the source

and target database versions are different, the hardware platform is different, or the database structure is different.

For example, when migrating to a non-encrypted database to an encrypted database.

The target database should already be created, and there are many options available with Data Pump export/import

to instantiate the target database.

There are a few important considerations when using Data Pump export/import.

» Consider using Data Pump import with the NETWORK_LINK parameter to import directly from the source database

over a database link from the target database, reducing the time it takes to instantiate the target database.

» When exporting the source database do not export the GoldenGate administrator. Exclude the user with the

export parameter EXCLUDE=SCHEMA:"='GGADMIN'".

» Monitor the Data Pump export/import progress with the V$SESSION_LONGOPS data dictionary view.

» Because the objects being replicated by Oracle GoldenGate were already prepared in an earlier step, after the

objects are imported into the target database, Replicat can determine which transactions from the trail files to

apply without applying duplicate data. There is no need to use the Data Pump parameter FLASHBACK_SCN.

Refer to the Oracle Database Utilities documentation for more information about using Oracle Data Pump.

https://docs.oracle.com/en/database/oracle/oracle-database/19/sutil/index.html

Complete the Oracle GoldenGate Configuration

This section describes the Oracle GoldenGate configuration required after the target database is instantiated.

Create the Target Database GoldenGate Credentials

If the target database was instantiated using Oracle Data Pump, the GoldenGate database administrator account

should have already been created in a previous step, Create GoldenGate administrator database account.

The GoldenGate database credentials are required to allow the GoldenGate processes connectivity to the source

and target databases. Use the commands already provided above in the section Create GoldenGate Credentials to

create the target database GoldenGate credential.

If the target database is a multitenant database, the GoldenGate credential must connect to the PDB, and not the

CDB.

Create the Target Database GoldenGate Checkpoint Table

The checkpoint table is a required component of nonintegrated Parallel Replicat, which is recommended for use in

this whitepaper.

https://docs.oracle.com/en/database/oracle/oracle-database/19/sutil/index.html

37 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

A nonintegrated Replicat maintains its recovery checkpoints in the checkpoint table, which is stored in the target

database. Checkpoints are written to the checkpoint table within the Replicat transaction. Because a checkpoint

either succeeds or fails with the transaction, Replicat ensures that a transaction is only applied once, even if there is

a failure of the process or the database.

If the target database was created using RMAN Duplicate, verify the existence of a checkpoint table, using the

following command.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/commands/execute -X POST --data '{"name":

"report","reportType": "checkpointTables","credentials": {"alias":

"target_atp1","domain": "goldengate"},"specification": "ggadmin.gg_checkpoints"}'|

python -m json.tool

Replace the alias, domain, and specification of the checkpoint table to match the target database.

Example output if the checkpoint table already exists:

 "response": {

 "$schema": "ogg:commandResult",

 "tables": [

 "GGADMIN.GG_CHECKPOINTS"

]

 }

Example output if the checkpoint table does not exist:

 "response": {

 "$schema": "ogg:commandResult",

 "tables": []

 }

If the checkpoint table already exists, drop it before creating a new one.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/connections/goldengate.target/tables/checkpoint -

X POST --data '{"operation": "delete","name": "ggadmin.gg_checkpoints"}'| python -m

json.tool

Create the checkpoint table.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/connections/goldengate.target/tables/checkpoint -

X POST --data '{"operation": "add","name": "ggadmin.gg_checkpoints"}'| python -m

json.tool

Then check the table creation.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/connections/goldengate.target/tables/checkpoint -

38 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

X POST --data '{"operation": "info","name": "ggadmin.gg_checkpoints"}'| python -m

json.tool

Example return message:

{

 "$schema": "ogg:message",

 "code": "OGG-08100",

 "issued": "2019-02-04T17:18:09Z",

 "severity": "INFO",

 "title": "Checkpoint table ggadmin.gg_checkpoints created 2019-02-04 17:17:36.",

 "type": http://docs.oracle.com/goldengate/c1910/gg-winux/GMESG/oggus.htm#OGG-08100

}

Create Heartbeat Tables on the Target Database

The GoldenGate heartbeat tables are required to monitor the replication latency between the source and target

databases. If the target database already contains GoldenGate heartbeat objects, after being instantiated using

RMAN Duplicate, the objects need to be dropped before being recreated.

Use the following command to drop the target heartbeat table objects.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/connections/goldengate.target /tables/heartbeat -

X DELETE| python -m json.tool

Create the target heartbeat table objects.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/connections/goldengate.target/tables/heartbeat -X

POST --data '{"targetOnly":true}'| python -m json.tool

Create the Oracle GoldenGate Replicat

Before creating the Replicat, if the target database was instantiated using RMAN, the GoldenGate Extract that was

previously created for the database migration should be unregistered and deleted.

Use the following commands to unregister the Extract and delete it from the database.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/extracts/EXT1 -X DELETE | python -m json.tool

The creation of the Replicat process differs depending on how the target database was instantiated. Follow the

instructions below for either RMAN or Data Pump instantiation.

When creating a Replicat using the REST API, the process parameter file is automatically created, so there is no

need to manually create one.

39 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Creating the Replicat for an RMAN Instantiation

The following example command creates the non-integrated parallel Replicat.

$ curl -s –K access.cfg https://gghub-server/TARGET

adminsrvr/services/v2/replicats/REP1 -X POST --data '{"credentials": {"alias":

target","domain": "goldengate"},"source": {"path":

"/u01/oracle/goldengate/deployments/SOURCE/var/lib/data","name": "aa"},"begin":

{"sequence": 0,"offset": 0}, "checkpoint": {"table":

"ggadmin.gg_checkpoints"},"mode":{"type": "nonintegrated","parallel":

true},"config":["Replicat REP1", "UseridAlias target DOMAIN

goldengate","MAP_PARALLELISM 4","MIN_APPLY_PARALLELISM 2", "MAX_APPLY_PARALLELISM

50", REPORTCOUNT EVERY 15 MINUTES, RATE", "BATCHSQL", "Map pdb1.*.*"," Target

PDB1.*.*;"]}' | python -m json.tool

Confirm that the Replicat was created.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/replicats/REP1 -X GET | python -m json.tool

To start the Replicat, the SCN you recorded above in the Oracle RMAN Duplicate Database section is required.

Using the SCN value in the above example, 681543060, start the Replicat using the following example command.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/commands/execute -X POST --data

'{"name":"start","processName":"REP1",”AT”:681543060}' | python -m json.tool

Check the status of the Replicat.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/replicats/REP1/info/status -X GET | python -m

json.tool

Example output:

 "response": {

 "$schema": "ogg:replicatStatus",

 "lag": 0,

 "lastStarted": "2019-06-14T19:40:10.419Z",

 "position": {

 "name": "aa",

 "offset": 190639772,

 "path": "/u01/oracle/goldengate/deployments/SOURCE/var/lib/data/",

 "sequence": 5

 },

 "processId": 55184,

 "sinceLagReported": 8,

 "status": "running"

 }

40 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Creating the Replicat for a Data Pump Instantiation

When the target database is instantiated with Oracle Data Pump, there is an additional parameter required when

you create the Replicat process. The ENABLE_INSTANTIATION_FILTERING parameter instructs Replicat to filter

out and not apply trail file data that was committed before the instantiation SCN of each table, recorded in the Data

Pump export file. The instantiation SCN is stored in the target database data dictionary when the table is imported.

Create the Replicat.

$ curl -s –K access.cfg https://gghub-server/TARGET

adminsrvr/services/v2/replicats/REP1 -X POST --data '{"credentials": {"alias":

target","domain": "goldengate"},"source": {"path":

"/u01/oracle/goldengate/deployments/SOURCE/var/lib/data","name": "aa"},"begin":

{"sequence": 0,"offset": 0}, "checkpoint": {"table":

"ggadmin.gg_checkpoints"},"mode":{"type": "nonintegrated","parallel":

true},"config":["Replicat REP1", "UseridAlias target DOMAIN

goldengate","MAP_PARALLELISM 4","MIN_APPLY_PARALLELISM 2", "MAX_APPLY_PARALLELISM

50", REPORTCOUNT EVERY 15 MINUTES, RATE", "BATCHSQL", "DBOPTIONS

ENABLE_INSTANTIATION_FILTERING","Map pdb1.*.*"," Target PDB1.*.*;"]}' | python -m

json.tool

Confirm that the Replicat was created.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/replicats/REP1 -X GET | python -m json.tool

Start the Replicat.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/commands/execute -X POST --data

'{"name":"start","processName":"REP1"}' | python -m json.tool

Check the status of the started Replicat.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/replicats/REP1/info/status -X GET | python -m

json.tool

Assign the Autostart Task to Replicat

Now that the Replicat process is running, the autostart task previously in Create Auto-start Tasks should be

assigned to the Replicat using the following example command.

$ curl -s –K access.cfg https://gghub-server/TARGET

/adminsrvr/services/v2/replicats/REP1 -X PATCH --data '{"managedProcessSettings":

"MIGRATE01"}' | python -m json.tool

41 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Confirm that the Replicat is configured with the new profile (partial output shown).

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/replicats/REP1 -X GET | python -m json.tool

 "managedProcessSettings": "MIGRATE01",

Monitor GoldenGate Replication

When the Extract and Replicat are both running, the GoldenGate end-to-end latency must be monitored until all

outstanding transactional data generated during the target database instantiation has been applied, after which, you

can switch users and applications over to the migrated database.

First, compare the trail file progress of the Extract and Replicat processes.

View Extract checkpoint progress:

$ curl -s –K access.cfg https://gghub-server

/SOURCE/adminsrvr/services/v2/extracts/EXT1/info/checkpoints -XGET | python -m

json.tool

Example output:

"current": {

 "name": "aa",

 "offset": 388314032,

 "path": "/u01/oracle/goldengate/deployments/SOURCE/var/lib/data/",

 "sequence": 311,

 "sequenceLength": 9,

 "sequenceLengthFlip": false,

 "timestamp": "2019-02-08T21:43:36.660Z"

}

View Replicat checkpoint progress:

$ curl -s –K access.cfg https://gghub-server /SOURCE

/TARGET/adminsrvr/services/v2/replicats/REP1/info/checkpoints -XGET | python -m

json.tool

Example output:

"current": {

 "name": "aa",

 "offset": 346955548,

 "path": "/u01/oracle/goldengate/deployments/SOURCE/var/lib/data",

 "sequence": 311,

 "sequenceLength": 9,

 "sequenceLengthFlip": false,

42 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

 "timestamp": "2019-02-08T21:48:12.906Z"

}

When the Replicat is reading from the same trail file that the Extract is writing to, with a similar checkpoint offset, the

Replicat has applied all of the trail files generated during the target database instantiation.

Next, monitor the Oracle GoldenGate end-to-end latency using the heartbeat tables. Run the following command

until the lag time is acceptably low (for example, less than 2 seconds).

$ curl -s –K access.cfg https://gghub-server/TARGET

/adminsrvr/services/v2/connections/goldengate.target/tables/heartbeat/REP1 -XGET |

python -m json.tool

Example output:

 "heartbeats": [

 {

 "ageSeconds": 5.02,

 "lagSeconds": 1.27,

 "path": "EXT1 ==> REP1",

 "source": "DSGG:PDB1",

 "target": "GGT:PDB1"

 }

]

Testing the Migrated Database

Suspend GoldenGate apply and then create a Guaranteed Restore Point (GRP) so that you can test the target

database. When you are done testing flashback the database to the GRP, and the GoldenGate Replicat is restarted,

and replication resumes. When all testing is complete, you can drop the GRP. The cycle of suspending replication,

creating a GRP, testing, flashback database, and resuming replication can be done a number of times.

Suspend Replication

Suspend replication by stopping the GoldenGate Replicat process. Extract is left running so it will continue to extract

data from the source database, creating new trail file data.

1. Stop Replicat.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/commands/execute -X POST --data

'{"name":"stop","processName":"REP1","force":false}' | python -m json.tool

2. Check Replicat status.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/replicats/REP1 -X GET | python -m json.tool

It is not safe to continue until the Replicat status is stopped cleanly.

43 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Example output:

"sinceLagReported": 14,

"status": "stopped"

Create a Guaranteed Restore Point (GRP)

If the target database is a multitenant database, you create the GRP from in the CDB.

Connect to the CDB as the SYSDBA user and run the following statement.

SQL> CREATE RESTORE POINT <GRP name> FOR PLUGGABLE DATABASE <PDB name> GUARANTEE

FLASHBACK DATABASE;

For a single tenant database, use the following command to create the restore point.

SQL> CREATE RESTORE POINT <GRP name> GUARANTEE FLASHBACK DATABASE;

Confirm GRP creation.

SQL> set linesize 140 pages 1000

SQL> col con_id format 9999

SQL> col pdb_restore_point format a20

SQL> col name format a20

SQL> col guarantee_flashback_database format a5

SQL> col scn format 999999999999

SQL> col time format a48

SQL> alter session set nls_date_format='dd-Mon-yyyy hh:mi:ss';

SQL> select con_id,name,scn,time,guarantee_flashback_database,pdb_restore_point

from v$restore_point;

Validate the Target Database

The target database can now be used for application validation and a quick sanity check, including DML/DDL

against database tables. The test window should not normally exceed a couple of hours.

It is recommended that comprehensive performance and functional testing is completed before you start the

migration. The risks of using the current migration window for such comprehensive testing are:

1. Extend the migration window.

2. Extend the time GoldenGate requires, and possibly makes it impossible to catch up replicating the

transactions that are continually generated on the source database.

3. Cause issues that may compromise the target system and compromise the entire migration.

During testing, it is recommended that you continue monitoring GoldenGate lag and checkpoint differences (current

Extract trail file vs. Replicat last trail file applied) as detailed in the Monitoring GoldenGate Replication section.

44 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Flashback the Target Database

When testing is complete the target database can be closed, flashed back to the GRP, and reopened.

All of the following commands must be run while connected to the CDB as the SYSDBA user, if running a

multitenant database.

a. Shut down the database.

For single tenant:

SQL> shutdown immediate

For multitenant:

SQL> ALTER PLUGGABLE DATABASE <PDB name> CLOSE IMMEDIATE;

b. Flashback the database.

For single tenant:

SQL> FLASHBACK DATABASE TO RESTORE POINT <GRP name>;

For multitenant:

SQL> FLASHBACK PLUGGABLE DATABASE <PDB name> TO RESTORE POINT <GRP name>;

c. Start the database

For single tenant:

SQL> ALTER DATABASE OPEN RESETLOGS;

For multitenant:

SQL> ALTER PLUGGABLE DATABASE <PDB name> OPEN RESETLOGS;

After the database has been flashed back it is possible to do multiple cycles of testing and flashback to the same

GRP. However, the longer that replication is suspended, the longer it takes for replication to catch up.

Drop the Guaranteed Restore Point

When the database is open and testing is complete, drop the GRP. If you want to do multiple cycles of testing, it is

recommended that you resume replication and allow GoldenGate to catch up before re-iterating the testing cycle.

For single tenant:

SQL> DROP RESTORE POINT <GRP name>;

For multitenant:

SQL> DROP RESTORE POINT <GRP name> FOR PLUGGABLE DATABASE <PDB name>;

Resume Replication

45 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Resume replication by restarting the GoldenGate Replicat process.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/commands/execute -X POST --data

'{"name":"start","processName":"REP1"}' | python -m json.tool

Continue to monitor the GoldenGate checkpoints and lag, and when testing is complete, move to the final

switchover.

Switch Over to the Migrated Database

When you are done testing, you can switch over to the target database.

Determine Whether GoldenGate Replication Lag is Acceptably Low

An acceptable low replication lag can very vary greatly, depending on the source workload and network latency.

The lag should be monitored along with the current checkpoint position of the GoldenGate Extract and Replicat to

make sure that both processes are operating within the same trail file, which commonly implies lower latency

between Extract and Replicat. Use the commands specified in the Monitor GoldenGate Replication section to

determine when Extract and Replicat have reached an acceptable lag.

Stop Transactions From Starting on the Source Database

To complete a zero data loss switchover, stop transactions from occurring on the source database by stopping the

service for the source database, using SRVCTL.

After new connections and transactions are no longer allowed on the source database, monitor the database for all

active transactions to complete.

For example:

SQL> select XIDUSN, XIDSLOT, XIDSQN, STATUS, USED_UBLK, USED_UREC from v$transaction

where RECURSIVE='NO';

Once this returns no rows, you can assume that the source database is idle.

Verify That Extract Has Completed Outstanding Transactions

When all transactions have stopped on the source database, monitor Extract to make sure it has caught up with

extracting all outstanding transactions.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/extracts/EXT1/info/checkpoints -XGET | python -m

json.tool

The Extract output checkpoint position should not be moving much, only by the GoldenGate heartbeat table updates

46 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

every 5 minutes.

Stop the Extract

When you can see the Extract no longer moving forwards, you can stop it.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/commands/execute -X POST --data

'{"name":"stop","processName":"EXT1","force":true}' | python -m json.tool

Check that the status is stopped.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/extracts/EXT1 -X GET | python -m json.tool|grep

status

Wait for Replicat to Apply All Trail File Data

After Extract has been stopped you must wait for Replicat to apply all outstanding trail file data. To do this, monitor

the Replicat with the LOGEND command.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/replicats/REP1/command -X POST --data

'{"command":"LOGEND"}' | python -m json.tool

Example output:

"replyData": {

 "$schema": "er:logEndResult",

 "allRecordsProcessed": true

}

When the Replicat has applied all trail file data the allRecordsProcessed value of “true” is returned.

Switch Over to the Target Database

Now that all of the replicated data is applied to the target database, you can stop the Replicat.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/commands/execute -X POST --data

'{"name":"stop","processName":"REP1","force":true}' | python -m json.tool

With Replicat stopped, switch the database clients over to the target database.

Because both source and target databases are opened read-write during the migration process, enabling application

database services and switching the application to use the targeted services is under the discretion of the system or

database administrators. For read-only applications, switchover can happen immediately after GoldenGate Replicat

has applied all outstanding source transactions and stops, allowing for zero application downtime for those services.

47 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Read-write applications may require the assurance that all transactions have been applied on the target before

switching the application over to ensure the most up to date data is being manipulated.

If desired, Oracle GoldenGate Veridata can be used to identify and repair any out-of-sync data before switching over

to the migrated database. Refer to the Oracle GoldenGate Veridata documentation for more information.

https://docs.oracle.com/en/middleware/goldengate/veridata/12.2.1.2.0/books.html

Removing the GoldenGate Configuration

After migrating the Oracle database, you can remove the GoldenGate configuration using the following commands.

Drop the GoldenGate Processes

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/replicats/REP1 -X DELETE | python -m json.tool

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/extracts/EXT1 -X DELETE | python -m json.tool

Use the following command to remove the trail files.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/commands/execute -X POST --data '{"name":

"purge","purgeType": "trails","trails":[{"name":"aa"}],"useCheckpoints":

false,"keep": [{"type": "min","units": "files","value": 0}]}' | python -m json.tool

Remove the Autostart Tasks

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/config/types/ogg:managedProcessSettings/values/og

g:managedProcessSettings:MIGRATE01 -XDELETE | python -m json.tool

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/config/types/ogg:managedProcessSettings/values/og

g:managedProcessSettings:MIGRATE01 -XDELETE | python -m json.tool

Drop the Heartbeat Tables on the Target Database

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/connections/goldengate.source_pdb/tables/heartbea

t -X DELETE| python -m json.tool

If the heartbeat table was created in the source database as part of the migration, then it should be also be
dropped.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/connections/goldengate.source_pdb/tables/heartbea

t -X DELETE| python -m json.tool

https://docs.oracle.com/en/middleware/goldengate/veridata/12.2.1.2.0/books.html

48 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Drop the Checkpoint Table

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr//services/v2/connections/goldengate.target/tables/checkpoint

-X POST --data '{"operation": "delete","name": "ggadmin.gg_checkpoints"}'| python -m

json.tool

Remove the GoldenGate Credentials

Removing the Oracle GoldenGate credentials does not drop the user accounts from the database.

$ curl -s –K access.cfg https://gghub-

server/TARGET/adminsrvr/services/v2/credentials/goldengate/target -X DELETE | python

-m json.tool

The following example is for a multitenant source database.

$ curl -s –K access.cfg https://gghub-

server/SOURCE/adminsrvr/services/v2/credentials/goldengate/source_cdb -X DELETE |

python -m json.tool

$ curl -s –K access.cfg https://gghub-

serverSOURCE/adminsrvr/services/v2/credentials/goldengate/source_pdb -X DELETE |

python -m json.tool

49 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Appendix A – Example Oracle GoldenGate Deployment Creation Response Files

Most of the configuration variables are related to file system directories where the deployment and GoldenGate

process files are stored, so it is important that the directories match those already created.

Use the correct response file from the current GoldenGate installation software to ensure that the parameters are

specified correctly.

The following example response file parameter changes are required.

Section A - General

DEPLOYMENT_NAME=TARGET # Make sure this is a unique deployment name

Section B - Administrator Account

ADMINISTRATOR_USER=admin # GG deployment administration account, NOT a database account.

ADMINISTRATOR_PASSWORD=password # Note: you MUST specify a password

Section C - Service Manager

File system directory for the Service Manager deployment. This only gets set for the first deployment creation.

SERVICEMANAGER_DEPLOYMENT_HOME=/mnt/acfs_gg/deployments/ggsm

HOST_SERVICEMANAGER=127.0.0.1 # Leave as localhost (127.0.0.1)

PORT_SERVICEMANAGER=9100 # Set to a unused port number, unique for this deployment. For the second

 # deployment creation, set this to the port# used for the initial deployment

 # creation.

CREATE_NEW_SERVICEMANAGER=true # Only set to a true for first deployment creation.

Section D - Software Home

OGG_SOFTWARE_HOME=/app/goldengate/target # GoldenGate software location

Section E - Deployment Directories

OGG_DEPLOYMENT_HOME=/ mnt/acfs_gg/deployments/target # Deployment name should be unique

OGG_ETC_HOME=/mnt/acfs_gg/deployments/target/etc

OGG_CONF_HOME=/mnt/acfs_gg/deployments/target/etc/conf

OGG_SSL_HOME=/mnt/acfs_gg/deployments/target/etc/ssl

OGG_VAR_HOME=/mnt/acfs_gg/deployments/target/var

OGG_DATA_HOME=/mnt/acfs_gg/deployments/target/var/lib/data

Section F - Environment Variables

ENV_ORACLE_HOME=/u01/app/oracle/product/19.1/client

ENV_LD_LIBRARY_PATH=${ORACLE_HOME}/lib:/u01/app/oracle/product/19.1/client/lib:/u

01/app/oracle/product/19.1/client/rdbms/lib:/u01/app/oracle/product/19.1/client/j

dbc/lib:/u01/oracle/goldengate/target/lib

50 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

ENV_TNS_ADMIN=/u01/app/oracle/network/admin # Use a single TNS_ADMIN for all deployments

Section I - Services

PORT_ADMINSRVR=9101 # Set to an unused port number, unique for this deployment.

DISTRIBUTION_SERVER_ENABLED=false # Not using due to local trail files.

PORT_DISTSRVR=9102 # Set to an unused port number, unique for this deployment.

RECEIVER_SERVER_ENABLED=false # Not using due to local trail files.

PORT_RCVRSRVR=9103 # Set to an unused port number, unique for this deployment.

PORT_PMSRVR=9104 # Set to an unused port number, unique for this deployment.

UDP_PORT_PMSRVR=9105 # Set to an unused port number, unique for this deployment.

Section J - REPLICATION OPTIONS

OGG_SCHEMA=ggadmin # Set to schema used for GG administrator in the database. MAKE SURE

 # SOURCE & TARGET DATABASE SCHEMA NAMES MATCH.

For the second deployment, create a second response file with different directories and port numbers, including the

following major parameter differences.

Section A - General

DEPLOYMENT_NAME=SOURCE # Make sure this is a unique deployment name, should use SOURCE or

 # TARGET

Section C - Service Manager

SERVICEMANAGER_DEPLOYMENT_HOME= # Leave blank for subsequent deployment creations.

HOST_SERVICEMANAGER=127.0.0.1 # Leave as localhost (127.0.0.1)

PORT_SERVICEMANAGER=9100 # Set this to the port# used for the initial deployment creation.

CREATE_NEW_SERVICEMANAGER=false # Set to false because the initial deployment will have already

 # created the Service Manager.

Section D - Software Home

OGG_SOFTWARE_HOME=/app/oracle/goldengate/source # GoldenGate software location specified

 # above in step #2 for the correct database compatibility

Section E - Deployment Directories

OGG_DEPLOYMENT_HOME=/mnt/acfs_gg/deployments/source # Store on the encrypted file system.

 # Should be either 'source' or 'target'.

OGG_ETC_HOME=/mnt/acfs_gg/deployments/source/etc

OGG_CONF_HOME=/mnt/acfs_gg/deployments/source/etc/conf

OGG_SSL_HOME=/mnt/acfs_gg/deployments/source/etc/ssl

51 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

OGG_VAR_HOME=/mnt/acfs_gg/deployments/source/var

OGG_DATA_HOME=/mnt/acfs_gg/deployments/source/var/lib/data

Section F - Environment Variables

ENV_ORACLE_HOME=/u01/app/oracle/product/12.2/client # Assuming the source database is 12.2,

 # but this may differ depending on the source database

 # version

ENV_LD_LIBRARY_PATH=${ORACLE_HOME}/lib:/u01/app/oracle/product/19.1/client/lib:/u

01/app/oracle/product/19.1/client/rdbms/lib:/u01/app/oracle/product/19.1/client/j

dbc/lib:/u01/oracle/goldengate/source/lib

ENV_TNS_ADMIN=/u01/app/oracle/network/admin # Use a single TNS_ADMIN for all deployments

Section I - Services

PORT_ADMINSRVR=9111 # Set to an unused port number, unique for this deployment

DISTRIBUTION_SERVER_ENABLED=false

PORT_DISTSRVR=9112 # Set to an unused port number, unique for this deployment

RECEIVER_SERVER_ENABLED=false

PORT_RCVRSRVR=9113 # Set to an unused port number, unique for this deployment

PORT_PMSRVR=9114 # Set to an unused port number, unique for this deployment

UDP_PORT_PMSRVR=9115 # Set to an unused port number, unique for this deployment

52 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Appendix B – Example Start and Stop Oracle GoldenGate Deployment Scripts

Starting the Oracle GoldenGate Deployments

Deployments are started automatically when the Service Manager starts, unless deployment services were not
running at the time the Service Manager was last stopped.

To start the Service Manager, which starts the two deployments, set the following environment variables.

export OGG_HOME=/app/oracle/goldengate/target

export OGG_ETC_HOME=/mnt/acfs_gg/deployments/ggsm/etc

export OGG_VAR_HOME=/mnt/acfs_gg/deployments/ggsm/var

export PATH=$OGG_HOME/bin:$PATH

export JAVA_HOME=$OGG_HOME/jdk

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$OGG_HOME/lib

Then run the startSM.sh script that is located in the service manager deployment directory.

For example:

/mnt/acfs_gg/deployments/ggsm/bin/startSM.sh

NOTE: The location of the startSM.sh script matches the location specified in the initial GoldenGate deployment

creation template file (SERVICEMANAGER_DEPLOYMENT_HOME).

Stopping the Oracle GoldenGate Deployments

When stopping deployments, if the Service Manager is currently running it will automatically restart the
deployment. For that reason it is important to stop the deployment where Service Manager is running BEFORE
stopping the second deployment.

Determine which deployment is running the Service Manager.

$ ps -ef | grep ServiceManager | grep -v grep

oracle 6240 1 0 Mar21 ? 00:09:19 /app/oracle/goldengate/target/bin/ServiceManager –

quiet

In this example, the Service Manager was started from the Oracle GoldenGate software home of

/app/oracle/goldengate/target. This is the OGG_HOME directory specified below.

Set the environment variables to match the deployment from where Service Manager is running (note that this is
NOT the same as starting the Service Manager).

export OGG_HOME=/app/oracle/goldengate/target

export OGG_ETC_HOME=/mnt/acfs_gg/deployments/target/etc

export OGG_VAR_HOME=/mnt/acfs_gg/deployments/target/var

export PATH=$OGG_HOME/bin:$PATH

53 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

export JAVA_HOME=$OGG_HOME/jdk

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$OGG_HOME/lib

Then stop the deployment with the following script (stopDeployment.sh $OGG_HOME).

#!/bin/bash

test if we have one arguments on the command line

if [$# != 1]

then

 echo " "

 echo "Usage: ./stopDeployment.bsh <GG Home Directory>"

 echo " "

 exit 1

fi

oggHome=$1

Check oggHome exsists!

if [! -d ${oggHome}]

then

 echo " "

 echo "*** ERROR: Directory ${oggHome} does NOT exist!"

 echo " "

 exit 1

fi

if [[-z "${OGG_VAR_HOME}"]]; then

 echo "Error: OGG_VAR_HOME environment variable is not set."

 exit

fi

function getPID {

 PID=$(cat "${OGG_VAR_HOME}/run/ServiceManager.pid" 2>/dev/null)

}

function isRunning {

 kill -0 ${PID} 2>/dev/null

}

Check if any OGG components are running

function isOGGRunning {

 local pgrep=$(command -v pgrep 2>/dev/null)

 local pattern=${oggHome}/bin/${OGGProcesses}

 if [[! -z ${pgrep}]]; then

 pgrep -f ${pattern} &>/dev/null

 else

 ps -aef | egrep ${pattern} &>/dev/null

54 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

 fi

}

Task: runCleanStop

Stop all OGG services

function runCleanStop {

 local timeout=10

 while (true); do

 pkill -f ${oggHome}/bin/'(adminsrvr|distsrvr|pmsrvr|recvsrvr|ServiceManager)'

 isOGGRunning || break

 sleep 1

 timeout=$(expr ${timeout} - 1)

 if [${timeout} -eq 0]; then

 return 1

 fi

 done

 return 0

}

runCleanStop

getPID

if (! isRunning); then

 echo "Service Manager is not running"

 exit

fi

echo "Stopping Service Manager process (PID: ${PID})..."

pkill -P ${PID}

for attempt in $(seq 10); do

 if (! isRunning); then

 echo "Service Manager stopped"

 exit 0

 fi

 sleep 1

done

echo "Service Manager process could not be stopped"

exit 1

To stop subsequent deployments, set the environment variables to match subsequent deployment directories

(OGG_ETC_HOME and OGG_VAR_HOME).

export OGG_HOME=/app/oracle/goldengate/source

export OGG_ETC_HOME=/mnt/acfs_gg/deployments/deployments/source/etc

export OGG_VAR_HOME=/mnt/acfs_gg/deployments/source /var

export PATH=$OGG_HOME/bin:$PATH

55 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

export JAVA_HOME=$OGG_HOME/jdk

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$OGG_HOME/lib

Then run the same stopDeployment.sh script that was used to stop the Service Manager deployment.

2 | ORACLE DATABASE MIGRATION WITH AN ORACLE GOLDENGATE HUB CONFIGURATION

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties
or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a
particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either
directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0116

Oracle Database Migration with an Oracle

GoldenGate Hub Configuration

August 2019

Author: Stephan Haisley

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

